COLORIMETRIC SENSING of FLUORIDE ION THROUGH A CHROMOGENIC ANION-π INTERACTION <u>Dr. SAMIT GUHA</u>, FLYNT GOODSON, Prof. SOURAV SAHA*, Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States, E-mail: <u>saha@chem.fsu.edu</u>; <u>sguha@chem.fsu.edu</u>

Recent discovery of anion— π interaction— a noncovalent interaction between an anion and an electron deficient organic π -system with strong positive quadrupole moment — has added a new dimension to the topical field of anion recognition. We will present a new binding mode of anions through anion— π interaction which is occurring between anions and π^* orbital of an electron deficient NDI derivatives. We will report the discovery of a supramolecular interaction (anion- π and charge/electron transfer, CT/ET) involving lone pair orbital of fluoride ion and π^* orbital of a π -electron deficient colorless naphthalene diimide (NDI) receptors. Strong electronic interactions lead to an unprecedented F \to NDI ET event, which produces an orange colored NDI * radical anion. Further reduction of NDI * by another F $^-$ ion produces a pink colored NDI 2 dianion, rendering NDI a colorimetric F $^-$ sensor. Preorganization of two NDI units in overlapping positions using folded linkers improves their selectivity and sensitivity for the F $^-$ ion significantly, allowing F $^-$ detection at nM concentration.