Name:
Hour: \qquad

Chemistry: Density of Gases

Solve each of the following problems, being sure to show your work and include all proper units.

1. A sample of gas has a density of $0.53 \mathrm{~g} / \mathrm{L}$ at 225 K and under a pressure of 108.8 kPa . Find the density of the gas at 345 K under a pressure of 68.3 kPa .
2. A sample of gas with a mass of 26 g occupies a volume of 392 L at $32^{\circ} \mathrm{C}$ and at a pressure of 0.95 atm. Find the density of the gas at STP.
3. A gas sample has a density of $1.77 \times 10^{-4} \mathrm{~g} / \mathrm{L}$ when the temperature is $15^{\circ} \mathrm{C}$ and the pressure is 780 mm Hg . Find the density of the gas at STP.
4. What is the mass of a 3.00 L sample of a gas if this volume was measured at $40^{\circ} \mathrm{C}$ and 99.2 kPa ? Assume that the density of the gas at $20^{\circ} \mathrm{C}$ and 101.3 kPa is $1.43 \mathrm{~g} / \mathrm{L}$.
5. A sample of gas has a volume of 2.68 L when the temperature is $-54^{\circ} \mathrm{C}$ and the pressure is 195.0 kPa . If the density of the gas is $0.322 \mathrm{~g} / \mathrm{L}$ at STP, find the mass of the sample.
6. $0.217 \mathrm{~g} / \mathrm{L}$
7. $0.078 \mathrm{~g} / \mathrm{L}$
8. $1.82 \times 10^{-4} \mathrm{~g} / \mathrm{L}$
9. 3.93 g
10. 2.07 g

Chemistry: Density of Gases

Solve each of the following problems, being sure to show your work and include all proper units.

1. A sample of gas has a density of $0.53 \mathrm{~g} / \mathrm{L}$ at 225 K and under a pressure of 108.8 kPa . Find the density of the gas at 345 K under a pressure of 68.3 kPa .
$\mathrm{P}_{1}=108.8 \mathrm{kPa} \quad \mathrm{P}_{2}=68.3 \mathrm{kPa}$
$\mathrm{V}_{1}=$?
$\mathrm{V}_{2}=$?
$\mathrm{T}_{1}=225 \mathrm{~K}$
$\mathrm{T}_{2}=345 \mathrm{~K}$
$\mathrm{D}_{1}=0.53 \mathrm{~g} / \mathrm{L}$
$\mathrm{D}_{2}=$? g / L

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \Rightarrow \frac{P_{1}\left(\frac{1}{D_{1}}\right)}{T_{1}}=\frac{P_{2}\left(\frac{1}{D_{2}}\right)}{T_{2}} \Rightarrow \frac{P_{1}}{D_{1} T_{1}}=\frac{P_{2}}{D_{2} T_{2}}
$$

Assume mass $=1 \mathrm{~g}$.
$\therefore \frac{1}{\mathrm{D}}=\mathrm{V}$ or $\mathrm{D}=\frac{1}{\mathrm{~V}}$

$$
\frac{108.8 \mathrm{kPa}}{(0.53 \mathrm{~g} / \mathrm{L})(225 \mathrm{~K})}=\frac{68.3 \mathrm{kPa}}{(225 \mathrm{~K})\left(\mathrm{D}_{2}\right)}
$$

$$
D_{2}=0.217 \mathrm{~g} / \mathrm{L}
$$

2. A sample of gas with a mass of 26 g occupies a volume of 392 L at $32^{\circ} \mathrm{C}$ and at a pressure of 0.95 atm . Find the density of the gas at STP.

$$
\begin{array}{ll}
\mathrm{P}_{1}=0.95 \mathrm{~atm} & \mathrm{P}_{2}=1 \mathrm{~atm} \\
\mathrm{~V}_{1}=392 \mathrm{~L} & \mathrm{~V}_{2}=? \mathrm{~L} \\
\mathrm{~T}_{1}=32^{\circ} \mathrm{C}+273=305 \mathrm{~K} & \mathrm{~T}_{2}=273 \mathrm{~K} \\
\mathrm{~m}=26 \mathrm{~g} & \mathrm{~m}=26 \mathrm{~g}
\end{array} \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \Rightarrow \begin{aligned}
& \frac{(0.95 \mathrm{~atm})(392 \mathrm{~L})}{305 \mathrm{~K}}=\frac{(1 \mathrm{~atm})\left(\mathrm{V}_{2}\right)}{273 \mathrm{~K}} \\
& \\
&
\end{aligned}
$$

3. A gas sample has a density of $1.77 \times 10^{-4} \mathrm{~g} / \mathrm{L}$ when the temperature is $15^{\circ} \mathrm{C}$ and the pressure is 780 mm Hg . Find the density of the gas at STP.

$$
\begin{array}{lll}
P_{1}=780 \mathrm{~mm} \mathrm{Hg} & \mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg} \\
V_{1}=? & \mathrm{~V}_{2}=? & \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \Rightarrow \frac{P_{1}}{D_{1} T_{1}}=\frac{P_{2}}{D_{2} T_{2}} \\
T_{1}=15^{\circ} \mathrm{C}+273=288 \mathrm{~K} & T_{2}=273 \mathrm{~K} & \\
D_{1}=1.77 \times 10^{-4} \mathrm{~g} / \mathrm{L} & \mathrm{D}_{2}=? \mathrm{~g} / \mathrm{L} & \frac{780 \mathrm{~mm} \mathrm{Hg}}{\left(1.77 \times 10^{-4} \mathrm{~g} / \mathrm{L}\right)(288 \mathrm{~K})}=\frac{760 \mathrm{~mm} \mathrm{Hg}}{\left(\mathrm{D}_{2}\right)(273 \mathrm{~K})} \\
& & D_{2}=1.82 \times 10^{-4} \mathrm{~g} / \mathrm{L}
\end{array}
$$

Chemistry: Density of Gases

4. What is the mass of a 3.00 L sample of a gas if this volume was measured at $40^{\circ} \mathrm{C}$ and 99.2 kPa ? Assume that the density of the gas at $20^{\circ} \mathrm{C}$ and 101.3 kPa is $1.43 \mathrm{~g} / \mathrm{L}$.

$$
\begin{array}{ll}
\mathrm{P}_{1}=99.2 \mathrm{kPa} & \mathrm{P}_{2}=101.3 \mathrm{kPa} \\
\mathrm{~V}_{1}=3.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=40^{\circ} \mathrm{C}+273=313 \mathrm{~K} & \mathrm{~T}_{2}=20^{\circ} \mathrm{C}+273=293 \mathrm{~K} \\
\mathrm{D}_{1}=1.31 \mathrm{~g} / \mathrm{L} & \mathrm{D}_{2}=1.43 \mathrm{~g} / \mathrm{L}
\end{array} \quad \begin{gathered}
\mathrm{P}_{1} \mathrm{~V}_{1} \\
\\
\end{gathered}
$$

$$
\mathrm{xg}=3.0 \mathrm{~L}\left(\frac{1.31 \mathrm{~g}}{1 \mathrm{~L}}\right)=3.93 \mathrm{~g}
$$

5. A sample of gas has a volume of 2.68 L when the temperature is $-54^{\circ} \mathrm{C}$ and the pressure is 195.0 kPa . If the density of the gas is $0.322 \mathrm{~g} / \mathrm{L}$ at STP, find the mass of the sample.

$$
\begin{array}{lll}
P_{1}=195 \mathrm{kPa} & \mathrm{P}_{2}=101.3 \mathrm{kPa} \\
\mathrm{~V}_{1}=2.68 \mathrm{~L} & \mathrm{~V}_{2}=? & \\
T_{1}=-54{ }^{\circ} \mathrm{C}+273=219 \mathrm{~K} & T_{2}=273 \mathrm{~K} \\
D_{1}=? \mathrm{~g} / \mathrm{L} & D_{2}=0.322 \mathrm{~g} / \mathrm{L} & \frac{P_{1} \mathrm{~V}_{1}}{T_{1}}=\frac{P_{2} \mathrm{~V}_{2}}{T_{2}} \Rightarrow \frac{P_{1}}{D_{1} T_{1}}=\frac{P_{2}}{D_{2} T_{2}} \\
& & \\
& & \\
\left(D_{1}\right)(2195 \mathrm{kPa})
\end{array}=\frac{101.3 \mathrm{kPa}}{(0.322 \mathrm{~g} / \mathrm{L})(273 \mathrm{~K})}
$$

Finally, calculate the mass of the gas

$$
D_{1}=0.773 \mathrm{~g} / \mathrm{L}
$$

$$
x \mathrm{~g}=2.68 \mathrm{~L}\left(\frac{0.773 \mathrm{~g}}{1 \mathrm{~L}}\right)=2.07 \mathrm{~g}
$$

Answers:

1. $0.217 \mathrm{~g} / \mathrm{L}$
2. $0.078 \mathrm{~g} / \mathrm{L}$
3. $1.82 \times 10^{-4} \mathrm{~g} / \mathrm{L}$
4. 3.93 g
5. 2.07 g
