METAL COMPLEXES OF A MULTIDENTATE CYCLOPHOSPHAZENE WITH IMIDAZOLE-CONTAINING SIDE CHAINS FOR HYDROLYSES OF PHOSPHOESTERS: A BIMOLECULAR DINUCLEAR PATHWAY.

<u>Vasiliki Lykourinou</u>, ^[b] Le Wang, ^[a,b] Yong Ye, ^[a] Li-June Ming, *^[b] and Yufen Zhao*^[a] ^[a] Department of chemistry, Zhengzhou University, Zhengzhou, 450052, China. ^[b] Department of chemistry, University of South Florida, Tampa,FL 33620-5250,USA

An imidazole-containing cyclophosphazene (ImCpz) multidentate ligand and its metal complexes (M_x –ImCpz; x=1,2, or 3; $M=Zn^{2+},$ $Cu^{2+},$ or Co^{2+}) have been prepared and used as artificial nuclease/phosphoesterase models. The catalytic activity of these complexes was examined toward hydrolysis of mono-, di-, and tri-phosphoester substrates (p-nitrophenylphosphate NPP, bis(p-nitrophenyl)phosphate BNPP, and tri(p-nitrophenyl)phosphate TNPP) in 75% DMSO buffer solution at pH = 7–11 and 37 °C under pseudo-first-order reaction conditions. All the complexes exhibit enzyme-like saturation kinetics toward the phosphoester substrates under the experimental conditions, with the copper complex exhibiting the highest catalytic proficiencies ($k_{cat}=7.3\times10^{-4}$ to 3.1×10^{-2} s⁻¹ and $k_{cat}/K'=0.0027$ to 99 s⁻¹ M⁻¹). The mechanism of the hydrolytic catalysis toward the faster substrate NPP was in further inverstigated at various conditions, which revealed a unique bimolecular dinuclear pathway, despite the multidentate nature of the ligand.