AUTOCATALYTIC O₂ ACTIVATION BY AN OCO³⁻ TRIANIONIC PINCER CR^{III} COMPLEX: ISOLATION AND CHARACTERIZATION OF THE AUTOCATALYTIC INTERMEDIATE [CR^{IV}]₂(μ -O) DIMER. Matthew E. O'Reilly, [‡] Trevor J. Del Castillo, [‡] Joseph M. Falkowski, [‡] Vasanth Ramanchandran, [¶] Mekhela Pati, [¶] Marie C. Correia, [‡] Khalil A. Abboud, [‡] Naresh S. Dalal [¶] David E. Richardson, [‡] and Adam S. Veige. ^{‡*}

Kinetic experiments designed to probe the mechanism of O_2 activation by $[^tBuOCO]Cr^{III}(THF)_3$ (1) reveal that the product $[^tBuOCO]Cr^V(O)(THF)$ (2) catalyzes the oxidation of $[^tBuOCO]Cr^{III}(THF)_3$ (1) via formation of the μ -O dimer $\{[^tBuOCO]Cr^{IV}(THF)\}_2(\mu$ -O) (3). Simulations of the kinetic data confirm an autocatalytic O_2 activation mechanism. In addition to an unprecedented O_2 activation mechanism, single crystals of a rare μ -O dimer 3 were attained. Complex 1 catalyzes the aerobic oxidation of PPh₃ with a turnover number =200. Formation of product (OPPh₃) is known to prevent re-oxidation of the catalysts but the presence of OPPh₃ accelerates O_2 activation by forming the five-coordinate complex trans- $[^tBuOCO]Cr^{III}(OPPh_3)_2$ (4).