M_{3-x}(NH₄)_xCrO₈ (M = Na, K, Rb, Cs): A NEW FAMILY OF Cr ⁵⁺ - BASED MAGNETIC FERROELECTRICS R. Samantaray ¹, R.J Clark¹, Eun S. Choi², Haidong Zhou², V. D. Bert¹, Naresh Dalal^{1,2}, ¹Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, ²National High Magnetic Field laboratory, Tallahassee, Florida 32306-4005, USA

Upon consideration of the hydrogen - bonding properties of the NH_4^+ cation, we synthesized a new class of compounds, $M_{3\text{-x}}(NH_4)_x$ CrO_8 $(M=Na, K, Rb, Cs)^1$. These magnetic compounds with the simple $3d^1$ ground state become ferroelectric. X-ray studies confirmed that the phase transition involves a symmetry change from $I\overline{4}2m \to Cmc2_1 \to P1$. The phase transitions were monitored by various experimental techniques such as: X-ray Diffraction, Heat Capacity, Dielectric and Raman scattering. The transition temperature depends linearly on the composition variable x. The transitions are of the order disorder type, with N-H...O bonding playing the central role in the mechanism.

References:

- 1. R. Samantaray, R.J Clark, <u>Eun S. Choi, Haidong Zhou</u>, V. D. Bert, Naresh S. Dalal
- J. Am. Chem. Soc. 2011, 133, 3792-3795