Controlled Synthesis of Silica Capsules: Taming the Reactivity of SiCl₄ Using Flow and Conditions

<u>L. Zane Miller</u>,^a Jeremy L. Steinbacher, ^b Tania I. Houjeiry,^a Ashley R. Longstreet,^a Kendra L. Woodberry,^c B. Frank Gupton,^c Banghao Chen,^a Ron Clark,^a D. Tyler McQuade^{*a}

^aDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306; ^bDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; Department of Chemistry and Biochemistry, Canisius College, Buffalo, NY 14208-1098, and the ^cDepartment of Chemical and Life Science Engineering and Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-9068

Abstract: Monodisperse silica microcapsules are typically fabricated using hard templating methods. Though soft-templating methods are known, none yet provides a fast and easy method to produce monodisperse capsules. Herein, we describe a mesofluidic strategy whereby monodisperse droplets of reactive silica precursors are formed using a snap-off mechanism via a T-junction. Both the mesofluidic system and the composition of the reactive silica formulation are critical features. Using solid- and solution-state ²⁹Si-NMR, SEM, and optical microscopy, we have developed models for why some formulations form exploding capsules, why some capsules contain crystalline materials, and why some capsules have thin or thick walls.