REGULATION OF THE ATPase ACTIVITY OF ABCE1 FROM *PYROCOCCUS ABYSSI* **BY Fe-S CLUSTER STATUS AND Mg²⁺: IMPLICATION FOR RIBOSOMAL FUNCTION.** Lynn M. Sims^{1,2} and <u>Robert Y. Igarashi</u>^{1,2}, ¹Department of Chemistry and ²Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816

Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the *Pyrococcus abyssi* ABCE1 (*Pab*ABCE1) studied using both *apo*- (without reconstituted Fe-S clusters) and *holo*- (with full complement of Fe-S clusters reconstituted post-purification) forms and is shown to be jointly regulated by the status of FeS clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for *Pab*ABCE1, but *Pab*ABCE1 for Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity. Physiological [Mg²⁺] inhibits the *Pab*ABCE1 ATPase (*K*_i of ~1 µM) for both *apo*- and *holo-Pab*ABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the *apo*- and *holo-Pab*ABCE1 where the apparent ATP *K*_m of *apo-Pab*ABCE1 increases >30 fold from ~30 µM to over 1 mM with Mg²⁺. This effect would significantly convert the ATPase activity of *Pab*ABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover an intricate balance between [Mg²⁺] and status of FeS clusters playing a joint role in regulating ABCE1's ATPase activity with implications to ribosomal function.