Thermomagnetic and Spectroscopic Studies of the Mechanism of Multiferroelectric

Behavior in the Cr (V) Peroxychromates (NH₄)₃ Cr (O₂)₄ and the Effect of Cation

Substitution on the Phase Transition

R. Samantaray¹, R. J. Clark¹, E. S. Choi², H. D. Zhou and N. S. Dalal^{1, 2}

¹Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA

²National High Magnetic Field laboratory, Tallahassee, Florida 32306-4005, USA

Abstract: The Cr (V)-based antiferromagnetic compounds M_3 Cr(O₂)₄, M = K, Rb and Cs, are known to become ferroelectric when the M cation is replaced by the NH₄⁺ ion, but the underlying mechanism is not fully understood. Here we report detailed x-ray structural, heat capacity, dielectric relaxation, polarization current, Raman scattering and variable frequency EPR measurements with a view to understand the mechanism underlying the multiple solid-solid phase transitions in the M_{3-x} (NH₄)_x $Cr(O_2)_4$ family. At 295 K, $(NH_4)_3Cr(O_2)_4$ crystals exhibit tetragonal $(I\overline{4}2m)$ symmetry, with the NH_4^+ cations occupying two distinctly different sites. At site 1, NH_4^+ ions have usual tetrahedral symmetry with two equal N—HO distances whereas at site 2, there are orientationally disordered NH₄⁺ ions with a time-averaged (seemingly) *octahedral* site symmetry. Ordering of the NH₄⁺ ions at site 1 leads to a ferroelectric transition at 250 K, followed by slowing down of site 2 cations at 207 K, and finally the third phase transition occurs at 137 K due to the ordering of the NH_4^+ ions at site 2. The lattice symmetry is lowered to Cmc2(1) below 250 K. The N-H ... O bond distances become unequal as a result of hydrogen bonding. Specific heat measurement exhibits a λ type anomaly at 250 K, accompanied by anomalies in dielectric constant and pyroelectric current. High frequency EPR spectra of the $[Cr(O_2)_4]^{3-}$ ion also confirmed the transition temperature of 250 K. Raman studies confirmed the role of the NH_4^+ ion's rotational and translational modes in the transition mechanism. The transition temperatures of the mixed Rb and Cs compounds vary linearly with the NH_4^+ content. It is thus seen that the phase transitions are guided by the rotational and translational dynamics of the NH₄⁺ ions..., via The same principles should lead to the development of other classes of hydrogen bonding. multiferroics.