A NEW TRIANIONIC ONO³⁻ PINCER-TYPE LIGAND AND ITS APPLICATION IN GENERATING HIGHLY NUCLEOPHILIC M-C BONDS: AN INORGANIC ENAMINE. Adam S. Veige, Matthew E. O'Reilly, Ion Ghiviriga, Khalil A. Abboud, Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL, 32611.

Appending an amine to a C=C double bond drastically increases the nucelophilicity of the β -carbon atom of the alkene and are known as enamines. In this presentation we present the synthesis and characterization of a new CF₃-ONO³⁻ (1) trianionic pincer-type ligand that is rationally designed to mimic enamines within a metal coordination sphere. Presented is a synthetic strategy to create enhanced nucleophilic tungsten-alkylidene and -alkylidyne complexes. Specifically, we present the synthesis and characterization of the new CF₃-ONO³⁻ trianionic pincer tungsten alkylidene [CF₃-ONO]W=CH(Et)(O'Bu) (2) and alkylidyne {MePPh₃}{[CF₃-ONO]W=C(Et)(O'Bu)} (3) complexes. Exhibiting unique nucleophilic reactivity, adding MeOTf to 3 alkylates the alkylidyne to yield [CF₃-ONO]W=C(Me)(Et)(O'Bu) (4), but the bulkier Me₃SiOTf sylilates the *tert*-butoxide, which subsequently undergoes isobutylene expulsion to form [CF₃-ONO]W=CH(Et)(OSiMe₃) (5). A DFT calculation performed on a model complex of 3, namely [CF₃-ONO]W=C(Et)(O'Bu) (3') reveals the amide participates in a enamine-type bonding combination. For complex 2, the Lewis acids MeOTf, Me₃SiOTf, and B(C₆F₅)₃ catalyze isobutylene expulsion to yield the tungsten-oxo complex [CF₃-ONO]W(O)("Pr) (6).