This quiz is take-home and open book, and it is intended that all members of the group contribute to completing it. It is a violation of the Academic Honor Code to sign a quiz that you did not work on. The quiz is due at the beginning of class on Thursday, September 7.

List names in alphabetical order, and give social security numbers! Put names on all pages, and staple pages together

Average =12.8

Median =13.0

High =15.0

Points

(4) 1. Write each of the following numbers in exponential notation, and give the number of significant figures in the number:

<table>
<thead>
<tr>
<th>Number</th>
<th>Exponential Notation</th>
<th>Significant Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>546.21</td>
<td>5.4621 x 10^2</td>
<td>5</td>
</tr>
<tr>
<td>0.0005050</td>
<td>5.050 x 10^-4</td>
<td>4</td>
</tr>
<tr>
<td>20.02</td>
<td>2.002 x 10</td>
<td>4</td>
</tr>
<tr>
<td>3105.0</td>
<td>3.1050 x 10^3</td>
<td>5</td>
</tr>
</tbody>
</table>

(4) 2. Carry out the following calculations, giving the answer in exponential notation and to the correct number of significant figures:

(a) $25.29 \times 0.0016 = 4.0446 \times 10^{-2}$ (round to 2 sig. fig.)

(b) $\frac{203.27 \times 10^{-2} \times 0.51}{1456} = 7.1200 \times 10^{-4}$ (round to 2 sig. fig.)

(c) $3.12 + 0.04567 = 3.16567$ or 3.17 (round to hundredths position)

(d) $9.2567 - 9.2531 = 3.6 \times 10^{-3}$ (significant to fourth decimal place, but still only 2 significant figures)

(2) 3. The density of Hg is 13.6 g/mL. What does Hg stand for? What volume would 123.6 g of Hg occupy?

Hg is mercury. $123.6 \text{ g} \times \frac{1 \text{ mL}}{13.6 \text{ g}} = 9.09 \text{ mL}$ (minus 0.1 point if 9.088 is given)
List names in alphabetical order. **Be sure to staple pages together!**

(3) 4. Carry out the following unit conversions:

- 4.26 km to cm

 $$4.26 \text{ km} \times \frac{1 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ cm}}{10^{-2} \text{ m}} = 4.26 \times 10^5 \text{ cm}$$

- 55 L to mL

 $$55 \text{ L} \times \frac{1 \text{ mL}}{10^3 \text{ L}} = 5.5 \times 10^4 \text{ mL}$$

- 35 °C to K

 $$35 \degree \text{C} + 273.15 = 308 \text{ K}$$ (ok if only 273 is indicated)

(2) 5. 15.0 g of mercury oxide decomposes upon heating into 13.9 g of mercury and oxygen.

(a) How many grams of oxygen are produced in this reaction?

$$15.0 \text{ g mercury oxide} - 13.9 \text{ g mercury} = 1.1 \text{ g oxygen}$$

1 pt.

(b) How much mercury oxide would be required to produce 14 g of oxygen?

$$\frac{x \text{ g mercury oxide}}{14 \text{ g oxygen}} = \frac{15.0 \text{ g mercury oxide}}{1.1 \text{ g oxygen}}$$

1 pt.

$$x \text{ g mercury oxide} = 15.0 \text{ g mercury oxide} \times \frac{14 \text{ g oxygen}}{1.1 \text{ g oxygen}} = 1.9 \times 10^2 \text{ g}$$

(-0.1 pt if answer given to more than two significant figures)