This exam consists of six pages. Make sure you have one of each. Print your name at the top of each page now. Pages 7 and 8 contain some thermochemical data, important constants, a table of electronegativities, and a periodic table. You may tear both off and use them for scratch paper.

Show your work on calculations, including unit conversions, and give answers in the correct units and appropriate number of significant figures. In problems involving molecular and formula weights, you may use values rounded to the nearest 0.1 amu.

If anything confuses you or is not clear, raise your hand and ask!

Points

(6) 1. Complete and balance the following chemical equations. In cases where the name of the substance is given, give the formula under the name. In cases where a ? is given, fill in the missing compound under the ?.

(a) potassium hydroxide + bromous acid → potassium bromite + ?

(b) \(\text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{O}_2 \rightarrow ? + ? \)

(4) 2. Give the atomic symbol, including \(Z, A, \) and \(q \) in the proper location, for atoms or ions containing the following number of particles:

(a) 15 protons, 16 neutrons, 18 electrons
(b) 47 protons, 61 neutrons, 46 electrons

(5) 3. How many L of a 0.12 M solution of \(\text{Ba(OH)}_2 \) is required to neutralize 0.31 L of a solution of 0.47 M \(\text{HCl} \)? Write the equation for the reaction. Show your work.
4. Given the following balanced chemical equation:

\[
2 \text{Al}_{(s)} + 6 \text{HCl}_{(aq)} \rightarrow 2 \text{AlCl}_{3(aq)} + 3 \text{H}_2(g)
\]

(a) How many grams of Al will be required to produce 25.4 g of hydrogen gas?

(b) 2.5 Moles of Al are added to a solution containing 6.5 moles of HCl.

(1) Which reagent is limiting?

(2) How many moles of the excess reagent will remain after the reaction?

(3) How many moles of H\(_2\) will be produced in the reaction?

5. A compound containing C, H, and O yields the following analysis:
54.6% Carbon, 9.1% Hydrogen, 36.4% Oxygen. Determine the empirical formula.
6. Calculate the \(\Delta H \) for the following reaction in three different ways, using the thermochemical data given at the end of the test:

\[
C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)
\]

(a) Using bond energy data.

(b) Using heats of formation data.

(c) Using heats of combustion data. (Hint: Write the equations for complete combustion of both reactants and products, and use Hess’s Law to combine the \(\Delta H \) for those steps to give the \(\Delta H \) for the above reaction).

7. How many joules of heat energy will be required to raise the temperature of 25 grams of ice from -24°C to liquid water at 85°C?
(4) 8. What is the energy of a mole of photons having a wavelength of 450 nm?

(4) 9. What is the frequency of a photon of light emitted by a hydrogen atom in which the electron drops from the fourth Bohr orbit to the first Bohr orbit?

(3) 10. Write the abbreviated electron configuration (using the rare gas core, i.e. $C = \{\text{He}\}2s^22p^6$) for the following:

\begin{align*}
\text{Ni} & \quad \text{Si} & \quad \text{Ga}
\end{align*}

(4) 11. Give the value of the quantum number l associated with electrons in each of the following orbitals:

\begin{align*}
2p & \quad 5f & \quad 3s & \quad 4d
\end{align*}

\begin{align*}
l = & \quad \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}}
\end{align*}

(3) 12. Comparing the elements Br and Cl, which

(a) Has the higher ionization energy? ______

(b) Has the larger atomic radius? ______

(c) Is most reactive with metals? ______

(3) 13. Comparing the elements Na and P, which

(a) Has the higher ionization energy? ______

(b) Has the larger atomic radius? ______

(c) Forms an oxide which reacts with water to produce a basic solution? ______
For each of the following compounds or ions, draw the best Lewis dot structure. (If more than one resonance structure is "best", draw only one). The central atom is underlined. Give the electron pair geometry, the molecular geometry, and the hybridization about the central atom.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lewis Structure</th>
<th>Electron pair Geometry</th>
<th>Molecular Geometry</th>
<th>Hybridization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XeF₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO₃⁻</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw three Lewis Dot resonance structures for SO_3^{2-} in which the central sulfur atom has a zero formal charge. Label the formal charges on each oxygen. Must the octet rule must be violated to draw these structures?
16. What volume of oxygen, measured at 273 K and 1.00 atm pressure, must be used to completely burn 32.0 grams of C_3H_8? (Write the balanced equation for the reaction).

17. A 0.400 L lecture bottle of gas contains a mixture of 78.0 mole % nitrogen, 13.0 mole % oxygen, and 9.0 mole % CO$_2$ at 25°C and 12.4 atm pressure. How many moles of each gas are present in the cylinder?

18. Given the following oxidation-reduction reaction:

$$S_2O_4^{2-} + CrO_4^{2-} \rightarrow SO_3^{2-} + Cr^{3+}$$

(a) Identify: The reagent being oxidized ______ The reagent being reduced ______ The oxidizing agent ______ The reducing agent ______

(b) Balance the equation in basic solution.
Physical constants:
\[
\begin{align*}
\text{c} & = 3.00 \times 10^8 \text{ ms}^{-1} \\
\text{h} & = 6.63 \times 10^{-34} \text{ J-s} \\
R_H & = 2.18 \times 10^{-18} \text{ J} \\
\text{R} & = 0.0821 \text{ L-atm/mol-K}
\end{align*}
\]

?H of fusion of ice = 6.008 kJ/mol;
?H of vaporization of water = 40.67 kJ/mol;
Specific heat of ice = 2.092 J/g-K
Specific heat of water = 4.184 J/g-K;

Heats of Formation:

<table>
<thead>
<tr>
<th>Substance</th>
<th>ΔH_f° kJ/mol</th>
<th>Substance</th>
<th>ΔH_f° kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(g)</td>
<td>-110.5</td>
<td>CaO(s)</td>
<td>-635.1</td>
</tr>
<tr>
<td>CO$_2$(g)</td>
<td>-393.5</td>
<td>CaCO$_3$(s)</td>
<td>-1207.1</td>
</tr>
<tr>
<td>CH$_3$OH(l)</td>
<td>-238.6</td>
<td>Ca(OH)$_2$(s)</td>
<td>-986.1</td>
</tr>
<tr>
<td>C$_2$H$_5$OH(l)</td>
<td>-277.7</td>
<td>Mg(g)</td>
<td>147.1</td>
</tr>
<tr>
<td>H$_2$O(l)</td>
<td>-285.8</td>
<td>Mg$^{2+}$(g)</td>
<td>2335.1</td>
</tr>
<tr>
<td>H$_2$O(g)</td>
<td>-241.8</td>
<td>Mg$^+$ (g)</td>
<td>885.1</td>
</tr>
<tr>
<td>C$_2$H$_6$(g)</td>
<td>-84.7</td>
<td>MgO(s)</td>
<td>-601.7</td>
</tr>
<tr>
<td>C$_2$H$_4$(g)</td>
<td>52.3</td>
<td>Li(g)</td>
<td>159.3</td>
</tr>
<tr>
<td>C$_2$H$_2$(g)</td>
<td>226.7</td>
<td>Cl(g)</td>
<td>121.7</td>
</tr>
<tr>
<td>C$_6$H$_6$(l)</td>
<td>49.0</td>
<td>F(g)</td>
<td>80.0</td>
</tr>
<tr>
<td>C$_4$H$_8$(g)</td>
<td>-124.7</td>
<td>LiCl(s)</td>
<td>-408.3</td>
</tr>
<tr>
<td>CH$_2$O(g)</td>
<td>-117.0</td>
<td>Li$^+$ (g)</td>
<td>685.7</td>
</tr>
<tr>
<td>CH$_3$COOH(l)</td>
<td>-484.1</td>
<td>Cl(g)</td>
<td>-227</td>
</tr>
<tr>
<td>C$_6$H$_12$O$_6$(s)</td>
<td>-1273.3</td>
<td>F(g)</td>
<td>-252</td>
</tr>
</tbody>
</table>

Heats of Combustion:

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\Delta H_{\text{combustion}}$ kJ/mol</th>
<th>Substance</th>
<th>$\Delta H_{\text{combustion}}$ kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (s)</td>
<td>-393.5</td>
<td>CO (g)</td>
<td>-283.0</td>
</tr>
<tr>
<td>CH$_4$ (g)</td>
<td>-890</td>
<td>H$_2$ (g)</td>
<td>-285.9</td>
</tr>
<tr>
<td>C$_2$H$_4$ (g)</td>
<td>-2220</td>
<td>C$_6$H$_6$ (l)</td>
<td>-3267</td>
</tr>
<tr>
<td>CH$_3$OH (l)</td>
<td>-726.5</td>
<td>C$_2$H$_5$OH (l)</td>
<td>-1366.7</td>
</tr>
<tr>
<td>C$_2$H$_2$ (g)</td>
<td>-1410.9</td>
<td>C$_2$H$_2$ (g)</td>
<td>-1299.6</td>
</tr>
<tr>
<td>C$_2$H$_6$ (g)</td>
<td>-1559.7</td>
<td>C$_6$H$_12$O$_6$ (s)</td>
<td>-2816</td>
</tr>
</tbody>
</table>
Average Bond Energies (kJ/mol)

Single Bonds:

- C-H: 413
- N-H: 391
- O-H: 463
- F-F: 155
- C-C: 348
- N-N: 163
- O-O: 146
- C-N: 293
- N-O: 201
- F-F: 155
- C-O: 358
- N-F: 272
- O-F: 190
- Cl-F: 253
- C-F: 485
- N-Cl: 200
- O-Cl: 203
- Br-F: 218
- C-Cl: 328
- N-Br: 243
- O-Br: 218
- I-F: 237
- C-I: 276
- H-H: 436
- S-H: 339
- C-S: 259
- H-S: 567
- S-F: 327
- C-F: 485
- N-S: 266
- O-S: 218
- Br-S: 237
- C-Si: 301
- Si-O: 368

Multiple Bonds:

- C=C: 614
- N=N: 418
- O=O: 495
- C≡C: 839
- N≡N: 941
- C=N: 615
- N=O: 201
- O=Cl: 203
- Br=Cl: 218
- C=O: 358
- N=Cl: 272
- O=Br: 203
- Br=Br: 193
- C=Si: 301

Some Electronegativities

<table>
<thead>
<tr>
<th>Element</th>
<th>Electronegativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2.1</td>
</tr>
<tr>
<td>Li</td>
<td>1.0</td>
</tr>
<tr>
<td>Na</td>
<td>0.9</td>
</tr>
<tr>
<td>K</td>
<td>0.8</td>
</tr>
<tr>
<td>Rb</td>
<td>0.8</td>
</tr>
<tr>
<td>Cs</td>
<td>0.7</td>
</tr>
<tr>
<td>Al</td>
<td>1.0</td>
</tr>
<tr>
<td>Si</td>
<td>1.8</td>
</tr>
<tr>
<td>P</td>
<td>2.1</td>
</tr>
<tr>
<td>S</td>
<td>2.5</td>
</tr>
<tr>
<td>Cl</td>
<td>3.0</td>
</tr>
<tr>
<td>Ar</td>
<td>2.5</td>
</tr>
<tr>
<td>K</td>
<td>3.0</td>
</tr>
<tr>
<td>Ca</td>
<td>3.5</td>
</tr>
<tr>
<td>Ga</td>
<td>4.0</td>
</tr>
<tr>
<td>Ge</td>
<td>4.0</td>
</tr>
<tr>
<td>As</td>
<td>4.0</td>
</tr>
<tr>
<td>Se</td>
<td>4.0</td>
</tr>
<tr>
<td>Br</td>
<td>4.0</td>
</tr>
<tr>
<td>I</td>
<td>4.0</td>
</tr>
<tr>
<td>Rb</td>
<td>4.0</td>
</tr>
<tr>
<td>Sr</td>
<td>4.0</td>
</tr>
<tr>
<td>Y</td>
<td>4.0</td>
</tr>
<tr>
<td>Zr</td>
<td>4.0</td>
</tr>
<tr>
<td>Nb</td>
<td>4.0</td>
</tr>
<tr>
<td>Mo</td>
<td>4.0</td>
</tr>
<tr>
<td>Tc</td>
<td>4.0</td>
</tr>
<tr>
<td>Ru</td>
<td>4.0</td>
</tr>
<tr>
<td>Ag</td>
<td>4.0</td>
</tr>
<tr>
<td>Cd</td>
<td>4.0</td>
</tr>
<tr>
<td>In</td>
<td>4.0</td>
</tr>
<tr>
<td>Sn</td>
<td>4.0</td>
</tr>
<tr>
<td>Sb</td>
<td>4.0</td>
</tr>
<tr>
<td>Te</td>
<td>4.0</td>
</tr>
<tr>
<td>I</td>
<td>4.0</td>
</tr>
<tr>
<td>Po</td>
<td>4.0</td>
</tr>
<tr>
<td>At</td>
<td>4.0</td>
</tr>
<tr>
<td>Rn</td>
<td>4.0</td>
</tr>
<tr>
<td>Fr</td>
<td>4.0</td>
</tr>
<tr>
<td>Ra</td>
<td>4.0</td>
</tr>
<tr>
<td>Ac</td>
<td>4.0</td>
</tr>
<tr>
<td>Rf</td>
<td>4.0</td>
</tr>
<tr>
<td>Db</td>
<td>4.0</td>
</tr>
<tr>
<td>Sg</td>
<td>4.0</td>
</tr>
<tr>
<td>Bh</td>
<td>4.0</td>
</tr>
<tr>
<td>Bh</td>
<td>4.0</td>
</tr>
<tr>
<td>Hs</td>
<td>4.0</td>
</tr>
<tr>
<td>Mt</td>
<td>4.0</td>
</tr>
<tr>
<td>Uuu</td>
<td>4.0</td>
</tr>
<tr>
<td>Uuo</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Lanthanides:

Periodic Table

<table>
<thead>
<tr>
<th>Period</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H, Li, Na, K, Rb, Cs</td>
</tr>
<tr>
<td>2</td>
<td>Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>3</td>
<td>Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>4</td>
<td>Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>5</td>
<td>Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>6</td>
<td>Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>7</td>
<td>Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>8</td>
<td>V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>9</td>
<td>Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>10</td>
<td>Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>11</td>
<td>Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>12</td>
<td>Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>13</td>
<td>Ni, Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>14</td>
<td>Cu, Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>15</td>
<td>Zn, Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>16</td>
<td>Ga, Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>17</td>
<td>Ge, As, Se, Br, I</td>
</tr>
<tr>
<td>18</td>
<td>As, Se, Br, I</td>
</tr>
<tr>
<td>19</td>
<td>Se, Br, I</td>
</tr>
<tr>
<td>20</td>
<td>Br, I</td>
</tr>
</tbody>
</table>

Actinides:

<table>
<thead>
<tr>
<th>Period</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Uuu, Uuo</td>
</tr>
<tr>
<td>2</td>
<td>Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Uuu, Uuo</td>
</tr>
</tbody>
</table>

Period 1: 1s electrons