Chapter 21

Electron Transport and Oxidative Phosphorylation

Overview

- Oxidation of NADH and CoQH₂ produced in TCA cycle by O₂ is very exergonic.
- Some of the energy of oxidation is captured by synthesis of ATP from ADP and Pᵢ.
- The capture of energy requires a “coupling” of oxidation to phosphorylation.
- Coupling occurs through an intermediate proton electrochemical gradient across the inner mitochondrial membrane.

Energetics of Redox Reactions

- Oxidation-Reduction (Redox) reactions can be written as two “half-cell” reactions.

\[ A_{\text{ox}} + B_{\text{red}} \rightarrow A_{\text{red}} + B_{\text{ox}} \]

- These “half-cell” reactions can be physically separated and the electron transferred by an electrical circuit. (See Fig 21.2)
Energetics of the Voltaic Cell

- When the voltage difference between two half cell reactions is measured, the cells are at equilibrium.
  - \( \Delta G^{\text{overall}} = \Delta G^{\text{chemical}} + \Delta G^{\text{electrical}} = 0 \)
  - \( \Delta G^{\text{chemical}} = -\Delta G^{\text{electrical}} = -nF \Delta E \)
  
  (under standard state conditions, \( \Delta G^{\text{o}} \) and \( \Delta E^{\text{o}} \))
  
  \( n = \text{# of electrons}, F = \text{the Faraday, 96,485 coulombs/mol} \)
  
  (Recall that 1 coulomb-volt = 1 Joule)

The measurement of the voltage difference between two half cells is therefore a way to measure the free energy change of the chemical reaction. It tells you the amount of “useful work” (in this case electrical work) you can get out of the process. By conventions established, a spontaneous process (where \( \Delta G \) is negative) has a positive value for \( \Delta E \).

Standard Reduction Potentials

- Voltage differences are additive
  
  If voltage between A and B is 0.15, and between B and C is 0.23, then the voltage between A and C would be 0.38

- Therefore we can create a scale of “relative” voltages by picking a “standard” half cell, and setting it to 0.0, measuring everything else relative to it.

Standard Reduction Potentials, con’t.

- The standard electrode is chosen as the “hydrogen” electrode, for the half cell reaction:
  
  \[ \text{H}^+ + e^{-} \rightleftharpoons \frac{1}{2} \text{H}_2 \text{ (1 atm)} \] (\( E^{\text{o}} = 0.0 \text{ volt} \))

- Voltages of half cells measured against this cell are “standard reduction potentials” the tendency for reduction to occur.

  * The higher the number, the more easily reduced, or the stronger the substance is as an oxidizing agent.
Standard Reduction Potentials, con’t.

- Reduction potentials vary with concentration, just as free energy change does.
  
  \[
  E = E_0 - \frac{RT}{nF} \ln \left( \frac{[A_{red}]}{[A_{ox}]} \right) \quad \text{or} \quad E = E_0 + \frac{RT}{nF} \ln \left( \frac{[A_{ox}]}{[A_{red}]} \right)
  \]

  so correcting the hydrogen electrode to the "biological standard state"

  \[
  E'_o = E'_o + \frac{RT}{nF} \ln \left( \frac{[H^+]}{[H_2]} \right) + \frac{8.3 \times 10^5 \text{kJ/mole} - K_T(298K)}{1} \ln \left( \frac{10^{-3}}{1} \right)
  \]

  \[
  E'_o = E_o + (0.0256)(\ln 10^{-3}) = E_o + (0.0256)(-16.1) = -0.41 \text{ volt}
  \]

Standard Reduction Potentials, con’t.

- Summarized in Table 21.1
- Some examples: (ignoring protons)
  
  - \( \frac{1}{2} \text{O}_2 + 2 \text{e} \rightarrow \text{H}_2\text{O} \quad E'_o = 0.82 \)
  
  - \( \text{CoQ} + 2 \text{e} \rightarrow \text{CoQH}_2 \quad E'_o = 0.06 \)
  
  - \( \text{NAD} + 2 \text{e} \rightarrow \text{NADH} \quad E'_o = -0.32 \)

  - Electrons flow spontaneously from low to high reduction potential.

Energetics of NADH Oxidation

- \( \text{NADH} + \frac{1}{2} \text{O}_2 \rightarrow \text{NAD} + \text{H}_2\text{O} \)
- \( \text{NADH} + \rightarrow \text{NAD} + 2 \text{e} \quad E'_o = -0.32 \text{ volt} \)
- \( \frac{1}{2} \text{O}_2 + 2 \text{e} \rightarrow \text{H}_2\text{O} \quad E'_o = 0.82 \text{ volt} \)
- \( \Delta E'_o = E'_o \text{ acceptor} - E'_o \text{ donor} = 0.82 - (-0.32) = 1.14 \text{ V} \)
- \( \Delta G'^o = -nF \Delta E'_o \)
  
  \[
  = -2(96.5 \text{kJ/mole-V})(1.14 \text{V}) = -220 \text{kJ/mol}
  \]

Note, the table in the book gives – 0.421 volt—difference due to rounding errors.
Energetics of CoQH₂ Oxidation

• CoQH₂ + ½ O₂ → CoQ + H₂O
• CoQH₂ + → CoQ + 2 e⁻ E₀’ = 0.06 volt
• ½ O₂ + 2 e⁻ → H₂O E₀’ = 0.82 volt
• ΔE₀’ = E₀’ acceptor – E₀’ donor = 0.82-0.06 = 0.76 V
• ΔG°’ = -nF ΔE₀’
  = -(2)(96.5 kJ/mol-V)(0.76 V)
  = - 147 kJ/mol

Electron Transport Chain

• Electrons are not passed to oxygen directly, but along a series of “carriers” with intermediate reduction potentials.
• The carriers are located in protein complexes in the inner mitochondrial membrane.
• Classes of intermediate carriers include a flavoprotein, Fe/S proteins, and cytochromes.
• Cytochromes named because of their absorption in the visible spectrum. (See Fig. 21.9)
  • Prosthetic groups are heme groups, like hemoglobin. See Fig. 21.10

By breaking the overall large drop in energy into a series of smaller steps, the ability to “capture” the energy more efficiently is gained.

The participation of cytochromes in the process was discovered early because of the changes in the visible spectrum of tissues in various states of oxidation. The latter part of the electron transport chain was sometimes referred to as the “cytochrome chain”.

Electron Transport Chain, con’t.

There are Four Complexes in the chain:
I. NADH-CoQ Reductase
   NADH + CoQ → NAD + CoQH₂
II. Succinate-CoQ Reductase
   (This is the same as succinate dehydrogenase)
   Succinate + CoQ → fumarate + CoQH₂
III. CoQH₂-cytochrome c Reductase
   CoQH₂ + 2 cyt c (ox) → CoQ + 2 cyt c (red)
IV. Cytochrome c Oxidase
   2 cyt c (red) + ½ O₂ → 2 cyt c (ox) + H₂O
Topology of Electron Transport Chain

- Two mobile electron carriers transport electrons between the complexes.
- Coenzyme Q (ubiquinone) carries electrons from complexes I and II (and other flavoprotein complexes) to complex III. It is dissolved in the membrane.
  - See Figure 21.5 for redox structures of CoQ
- Cytochrome c carries electrons from complex III to complex IV. It is a peripheral protein located on the external face of the membrane.
  - See Figure 21.3 for a ribbon diagram.
- See Figure 21.4 for a schematic topology

Complex I
NADH-CoQ Reductase

- More than 30 protein subunits, MW 850 kD.
- Contains FMN and Fe/S centers as prosthetic groups.
- NADH binding site on matrix side.
- Detailed mechanism unknown.
  - See Figure 21.6 for postulated mechanism.
- $\Delta E'_o = 0.06-(-0.32)=0.38 \, \text{V}$, $\Delta G'_o = -73.3 \, \text{kJ/mol}$
- Pumps 4 H$^+$ across membrane for each 2 e$^-$

Complex II
Succinate-CoQ Reductase

- 4 protein subunits, MW 140 kD.
- Contains FAD and Fe/S centers as prosthetic groups.
  - FAD covalently bound.
- Succinate binding site on matrix side.
- $\Delta E'_o = 0.06-0.03=0.03 \, \text{V}$, $\Delta G'_o = -5.8 \, \text{kJ/mol}$
- Not enough energy to pump protons.
Complex III  
CoQ-Cytochrome c Reductase  
- 9-10 protein subunits, MW 250 kD.  
- Contains three hemes (b\textsubscript{L}, b\textsubscript{H}, c\textsubscript{1}) and Fe/S centers as prosthetic groups.  
- Spans membrane. (See structure, Fig 21.11)  
- Cytochrome c binding site on outer face of membrane.  
- $\Delta E^\circ = 0.254-0.06=0.194$ V, $\Delta G^\circ = -37.4$ kJ/mol  
- Pumps two protons per 2 e\textsuperscript{-}.  

Note that the proposed mechanism in Figure 21.12 suggests two protons being removed from the matrix per pair of electrons, but four protons being released to the outside of the membrane (two in the first half of the cycle, two in the second half).

Complex III, con’t.  
- Complex III bridges two electron carriers (CoQ) to one electron carriers (Fe of heme).  
- Proposed mechanism involves a “Q cycle”, that occurs in two stages.  
  - It explains both the 2e to 1e transition, as well as the proton translocation.  
  - See Figure 21.12 for details.

Note in the proposed Q cycle, the two cytochrome b’s are not on the direct line of electron transfer, but participate in the Q recycling steps. This explains some early ambiguities in attempts to “order” the carriers in the chain. Some evidence suggested that CoQ was reduced before cytochrome b, other evidence suggested cytochrome b was reduced before CoQ.

Complex IV  
Cytochrome c Oxidase  
- X-ray structure now known. (Fig 21.16)  
- 13 protein subunits, MW 204 kD  
- Contains two hemes (a and a\textsubscript{3}) and two copper atoms (Cu\textsubscript{A} and Cu\textsubscript{B}) as prosthetic groups.  
- Cytochrome oxidation at external face of membrane, oxygen reduction at matrix side.  
- $\Delta E^\circ = 0.816-0.254=0.562$ V, $\Delta G^\circ = -108.5$ kJ/mol  
- Pumps protons, stoichiometry uncertain, probably about 4 H\textsuperscript{+} per 2 e\textsuperscript{-}.  

Again, the proposed model suggests an unbalanced proton pump, this time with four being removed from the matrix and two being released to the outside for every two electrons passed to oxygen.
Complex IV, con’t.

- Cu₄ associated with heme a, electrons accepted by Cu and passed to heme
- Cu₅ associated with heme a₃ forming a binuclear center
- The binuclear center cycles through several oxidation states as it is first reduced, then binds oxygen, then is further reduced.
  - See the proposed model in Fig. 21.20

Overall Model of Electron Transport

- The four complexes (and other flavoprotein complexes) are oriented in the inner mitochondrial membrane, and free to move laterally.
- Coenzyme Q is an electron carrier buried in the hydrocarbon region of the membrane.
- Cytochrome C is a peripheral membrane protein on the external face of the membrane (in the space between the inner and outer membranes).
  - See Figure 21.21 for an overall summary of this model.

The Proton Gradient

- Mechanism of proton pumping still not understood, but some features apparent.
  - Reduction of flavoprotein and oxygen on matrix side removes protons from matrix.
  - Oxidation of CoQH₂ on surface leads to release of protons to outside (i.e., into inner membrane space.)
- Stoichiometry of 4 H⁺ for complex I, 2 H⁺ for complex III and 4 H⁺ for complex IV is consistent with the energy change of these steps.
- But note the text suggests complex III and IV are “unbalanced”, III takes up 2 H⁺, exports 4, while IV takes up 4 H⁺ and exports 2.
The Proton Gradient, con’t.

- Energy is stored in the proton gradient as both a chemical gradient ($\Delta pH$) and an electrical gradient ($\Delta \psi$, the difference in electrical potential across the membrane).
- The work it takes to move $n$ protons against this gradient is given by the relation:
  \[
  \Delta G = nRT \ln \frac{[H^+]_o}{[H^+]_i} + nF \Delta \psi
  \]
  \[
  = n(-2.3RT\Delta pH + F\Delta \psi)
  \]
  The proton motive force, is defined as
  \[
  \Delta \mu = \Delta G = \frac{-2.3RT}{nF} \Delta pH + \Delta \psi, \quad \text{and the units are volts.}
  \]

What Does “Coupling” Mean

- ATP synthesis (phosphorylation) occurs when electron transport takes place.
  - Stoichiometry expressed by a P/O ratio.
- Electron transport will not occur unless phosphorylation can also occur.
- “Respiratory control” is an inhibition of electron transport by the absence of ADP.
  - Degree of control expressed by a “respiratory control ratio”.

State III mitochondria have plentiful supply of substrate and oxygen. Rate of respiration is limited by quantity of mitochondria. State IV mitochondria have everything but the “acceptor” (ADP), and so rate of respiration is limited by the acceptor. When P/O ratio is low, respiratory control ratio is also low.
Inhibitors

- Some block particular electron transfer steps.
  - Rotenone and Amytal inhibit Complex I
  - Antimycin inhibits Complex III
  - Cyanide and azide inhibit Complex IV
- Some affect the "coupling"
  - Oligomycin and DCCD inhibit respiration only if it is coupled.
  - Dinitrophenol uncouples respiration from phosphorylation.

DCCD is dicyclohexylcarbodiimide.

Oxidation of substrates that produced NADH gave a P/O ratio near 3.0. Oxidation of succinate gave a P/O ratio near 2.0. Oxidation of cytochrome c, or something which reduced cytochrome c, such as ascorbic acid, gave a P/O ratio near 1.0.

Sites of Coupling

- Many experiments over the years suggested that coupling occurred:
  - Between NADH and CoQ
  - Between Co Q and cytochrome c
  - Between cytochrome c and oxygen
- Using glyceraldehyde-3-phosphate as a model, there was presumed to be a 1:1 stoichiometry for 1 site = 1 ATP.
Chapter 21, page 10

Models of Coupling

- The first model proposed a “high energy” chemical intermediate at each coupling site.
  - For example:
    \[ A_{\text{ox}} + B_{\text{red}} + Y \rightleftharpoons A_{\text{red}} + B_{\text{ox}} - Y \]
    \[ B_{\text{ox}} - Y + X \rightleftharpoons B_{\text{red}} + X - Y \]
    \[ X - Y + P_i \rightleftharpoons X - P_i + Y \]
    \[ X - P_i + ADP \rightleftharpoons ATP + X \]
  - This was called the “chemical coupling” hypothesis.

Models of Coupling, con’t.

- Electron micrographs showed that the inner membrane of state IV mitochondria was more “condensed” than in other states.
- Circular dichroism studies indicated differences in protein conformation for the various states of mitochondria.
- This led to the “conformational coupling” model:
  - \[ A_{\text{ox}} + B_{\text{red}} + P_{\text{conf.A}} \rightleftharpoons A_{\text{red}} + B_{\text{ox}} + P_{\text{conf.B}} \]
  - \[ ADP + P_i + P_{\text{conf.B}} \rightleftharpoons ATP + P_{\text{conf.A}} \]
  - Where \( \Delta G_{\text{conf.B - conf.A}} < 0 \)

Models of Coupling, con’t.

- Peter Mitchell’s Chemiosmotic Coupling Hypothesis was the breakthrough.
- It earned him the Nobel Prize.
- He proposed that the proton gradient was the coupling intermediate.
- Few accepted the idea at first, but evidence eventually accumulated to support it, including actual measurements of \( \Delta pH \) and \( \Delta \Psi \).

Years of research by many research groups were invested in trying to isolate X or Y. One problem with this hypothesis was that the chemical nature of X and Y had to be different at each coupling site.

Paul Boyer was a chief proponent of the conformational coupling hypothesis. Remnants of this hypothesis remain in the description of the conformational changes which the ATP synthase undergoes during ATP synthesis.

See page 693 for further discussion of the debates over these models.
ATP Synthase

• First discovered as an ATPase activity.
• Associated with particles on inner surface of inner membrane.
• The $F_i$ unit was associated with the “knobs” seen in electron micrographs.
  • It catalyzes hydrolysis of ATP when isolated.
  • It also restored coupling to submitochondrial particles that lost it.
  • It is bound to an integral membrane protein complex called $F_o$.

ATP Synthase, con’t.

• The complex between $F_i$ (a peripheral membrane complex) and $F_o$ (an integral membrane complex) is now known to be a proton pump.
• It can pump protons out of the mitochondria at the expense of ATP hydrolysis.
• But in reverse, it can tap the energy of the proton gradient to drive ATP synthesis.

Energetics of Proton Coupling

• $\Delta G$ of ATP synthesis under cellular conditions is near 45-50 kJ/mol.
  
  \[ \Delta G = nF\Delta \rho, \text{ where } \Delta \rho \text{ is the proton motive force} \]
  
  \[ n\Delta \rho \text{ must be } > \frac{\Delta G}{F} \text{ or } > \frac{50 \text{ kJ/mol}}{96.5 \text{ kJ/mol-volt}} = 0.52 \text{ volts} \]
  
  a $\Delta \rho$ of 1 and $\Delta \psi$ of .15 corresponds to a $\Delta \rho$ of about 0.2 volt

  Therefore, $n$ must be $> \frac{0.52}{0.2}$ or $>2.6$

Measurements suggest that $n = 3$, i.e. the ATP pumps three protons per ATP hydrolyzed.
Structure of ATP Synthase

- F₁ contains 5 protein subunits
  - α, β, γ, δ, ε
  - stoichiometry α₃ β₃ γ δ ε
- F₀ contains 3 hydrophobic subunits
  - a, b, c
  - stoichiometry a₁b₂c₉₋₁₂

Boyer Model for ATP Synthesis

- Three ATP binding sites, each in a different conformation.
- Each site rotates through each conformation.
- Proton flow somehow drives this “molecular motor”.
  - See Figure 21.27
- This postulate won Boyer a Nobel Prize.

According to Boyer, the energy requiring step is the conformational change that leads to release of ATP. Isotope exchange data with H₂¹⁸O showed ATP could be formed in the absence of the proton gradient. (See Figure 21.26.)

Artificial System for ATP Synthesis

- Confirmation that a proton gradient could drive ATP Synthesis came from experiments combining the ATP synthase and bacteriorhodopsin into phospholipid vesicles.
- Bacteriorhodopsin pumps protons when exposed to light.
- The vesicles catalyzed ATP synthesis when exposed to light.
  - See Figure 21.28.
Inhibitors

- Figure 21.30 summarizes effects of inhibitors.
- Oligomycin and DCCD inhibit the ATP synthase.
- Uncouplers are all lipid-soluble weak acids. They can serve as proton carriers across the membrane which discharge the proton gradient.

Communication Across Mitochondrial Membrane

- ATP-ADP Translocase
  - Antiport exchange of ADP and ATP across membrane.
  - Exchange lowers electrical gradient. (Fig. 21.32)
- Phosphate entry by symport with H⁺.
  - Transport lowers proton gradient.
- Net result is a cost of the electrochemical gradient of one proton to export the ATP.
- Therefore 4 protons needed for each ATP made.

P/O₂ Ratios Revisited

- Stoichiometry depends on stoichiometry of proton pumps.
- Current estimates:
  - Complex I: 4 protons
  - Complex III: 2 protons
  - Complex IV: 4 protons
  - ATP synthesis (Complex V)
    - 3 protons + 1 proton for export
P/O ratio

- For NADH reoxidation:
  - 10 protons from electron transport.
  - 4 protons needed per ATP.
  - Therefore P/O ratio of 2.5.
- For succinate (or CoQH₂) oxidation:
  - 6 protons from electron transport.
  - 4 protons needed per ATP.
  - Therefore P/O ratio of 1.5.

The text suggests that in bacteria, since no ATP needs to be transported across a membrane, that the respective P/O ratios are 3.0 and 2.0, respectively.

Oxidation of Cytoplasmic NADH

- NADH produced in the cytoplasm cannot cross the inner mitochondrial mechanism.
- There are at least two mechanisms by which it can be reoxidized by the electron transport chain.
  1. Glycerophosphate shuttle (Fig. 21.33)
     - Reduces a flavoprotein, producing CoQH₂, and hence only 1.5 ATP.
  2. Malate-Aspartate shuttle (Fig. 21.34)
     - More complex. Involves transaminases.