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Scroll waves pinned to moving heterogeneities
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Three-dimensional excitable systems can self-organize vortex patterns that rotate around one-dimensional
phase singularities called filaments. In experiments with the Belousov-Zhabotinsky reaction and numerical
simulations, we pin these scroll waves to translating inert cylinders and demonstrate the controlled repositioning
of their rotation centers. If the pinning site extends only along a portion of the filament, the phase singularity is
stretched out along the trajectory of the heterogeneity, which effectively writes the singularity into the system. Its
trailing end point follows the heterogeneity with a lower velocity. This velocity, its dependence on the placement
of the anchor, and the shape of the filament are explained by a curvature flow model.

DOI: 10.1103/PhysRevE.91.032930 PACS number(s): 82.40.Ck, 05.45.−a, 82.40.Qt

I. INTRODUCTION

Processes far from equilibrium can create complex patterns
that are difficult to predict from their atomistic or local
dynamics. This emergence of spatial complexity often results
from comparably simple transport processes. A classic exam-
ple are reaction-diffusion media, which generate dissipative
structures such as stationary Turing patterns, traveling waves,
and spatiotemporal chaos [1–3]. These structures are universal
in the sense that they are observed across a wide range of
physical, chemical, and biological experiments. Specifically,
rotating spiral waves of excitation are observed in systems
as diverse as active galaxies [4], catalytic reactions [5], and
bee colonies [6]. In addition, they can orchestrate important
biological functions such as the timing of contraction waves
during child birth [7] or induce life-threatening conditions such
as cardiac arrhythmias [8].

While spiral waves have been studied intensively over
the past decades, their three-dimensional counterparts have
attracted less attention. These scroll waves rotate around one-
dimensional phase singularities called filaments. In general,
these space curves are not static but move according to their
local curvature κ and difference in rotation phase (“twist”) [9–
11]. In simple cases, this motion obeys

ds
dt

= ακN̂, (1)

where s, N̂, and α denote the filament position, its unit
normal vector, and a system-specific line tension, respectively.
Negative values of α can induce a turbulent motion of
the filament [9,12], whereas positive values cause curve
shrinking dynamics for which filament loops annihilate and
filaments connecting external surfaces converge to straight
lines.

Recent studies show that filaments can attach to inactive
heterogeneities [13,14]. Most experiments on this type of
vortex pinning employ the Belousov-Zhabotinsky (BZ) re-
action [15], which is an important model of excitable and
oscillatory reaction-diffusion media. Scroll waves, however,
exist also in biological systems such as the human heart [8],
for which pinning could occur at anatomical features (e.g.,
blood vessel and papillary muscle insertion points) as well
as infarction-induced remodeled myocardium. Regardless of

the specific system, pinning of scroll waves implies wave
rotation around the heterogeneity whereas simple filament
termination is observed at heterogeneities much larger than
the free rotation orbit [16]. Pinning is subject to topological
constraints, alters the rotation frequency, reshapes the global
wave field, and potentially induces twist [13,16–18]. Recent
studies have also shown that scroll waves self-wrap around
thin cylindrical heterogeneities [19] and unpin due to advective
perturbations such as external electric fields [20].

In this paper, we report the pinning of scroll waves to
moving heterogeneities (realized as thin glass rods) and
show that a partially pinned filament stretches out along
the trajectory of the anchor. The tail end of the filament
does not remain stationary but follows the heterogeneity
at a speed that is independent of the anchor speed. Its
velocity and shape depend on geometric aspects and the
curvature flow dynamics of the homogeneous system. These
experimental and numerical results open up interesting pos-
sibilities for the study of excitable systems with dynamic
heterogeneities.

II. EXPERIMENTAL METHODS

Our experiments use a thick layer of BZ solution in a cylin-
drical glass vessel (diameter 5.6 cm). The system has a free
solution-air interface and its viscosity is increased by addition
of xanthan gum (0.4% w/v) and agar (0.05% w/v). The initial
concentrations of the reactants are: [NaBrO3] = 62 mmol/L,
[H2SO4] = 175 mmol/L, [malonic acid] = 48 mmol/L,
and [Fe(phen)3SO4] = 37.5 mmol/L. Details regarding the
chemical preparation and viscosity measurements have been
published in Ref. [21]. All experiments are carried out at room
temperature. We use a monochrome video camera equipped
with a dichroic blue filter to monitor the chemical wave
patterns. The heterogeneity is a vertical glass rod (diameter
1.1 mm) attached to a motor-driven linear actuator. The rod
is submerged into the solution from the top down to create a
constant gap of depth d between the bottom of the rod and the
surface of the container base [Fig. 1(a)]. In our experiments,
we vary the value of d between 0.2 and 0.75 cm while keeping
the height of the medium, h, constant at 1.1 ± 0.1 cm. We also
perform experiments in which d is essentially zero.
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FIG. 1. (Color online) (a) Schematic drawing of the experimental
setup. The vertical system dimension is not resolved and all local
image intensities are the result of cumulative absorption in that
direction. (b)–(e) Image sequence of two scroll waves. The right
vortex is pinned to a rightward moving glass rod. Time between
subsequent frames: 20, 48, and 87 min. Field of view: 2.3 × 2.3 cm.
See Supplemental Material [22] for movies.

III. RESULTS AND CONCLUSIONS

Figures 1(b)–1(e) show an image sequence of a pair of
counter-rotating scroll waves in a thick layer of the BZ
solution. The local gray levels are the result of light absorption
over the entire thickness of the sample. Absorption changes
along this third dimension are not resolved by our setup.
The rotation period of the scroll waves is 320 ± 30 s and
their wavelength is about 0.5 cm. Initially both filaments
are linear and oriented parallel to the optical axis of our
setup. The associated wave fields are untwisted. Accordingly
the three-dimensional vortices are detected as simple spiral-
shaped patterns [Fig. 1(b)]. We then pin the right vortex to
a glass rod, which appears as a small disk-shaped region in
[Fig. 1(c)]. We emphasize that the rod does not touch the
bottom of the reaction vessel but by choice, generates a gap d

of 0.45 cm. After five rotation periods, we begin to translate
this anchor rightwards at a constant speed of vr = 0.1 mm/min
[Fig. 1(d)]. In response, the pinned scroll wave loses its

initial, pseudo-two-dimensional character and a diffuse, bright
(excited) region is formed in the wake of the anchor. We
continue to observe wave rotation around the moving rod (see
movie in Ref. [22]) but also detect a trailing spiral-shaped
feature [Fig. 1(e)]. Notice that the unpinned vortex on the left
is essentially unaffected by these processes. The successful
pinning of the upper portion of the scroll wave to the moving
glass rod does not occur for all rod diameters and always fails
for very thin rods. Thicker glass rods, on the other hand, tend
to generate more complex wave patterns that show strong twist
due to the larger difference between the rotation period of free
and pinned scroll wave segments.

We interpret the observed deformation of the pinned scroll
wave in Figs. 1(d) and 1(e) as the result of an increasingly
deformed filament. While its top portion is anchored to the
moving glass rod, its unpinned connection to the base of the
reaction vessel becomes stretched out along the trajectory of
the rod. This stretching process is governed by (i) the topolog-
ical requirement of a continuous filament connection between
the glass rod and the lower system boundary and (ii) the
flux-related requirement that filaments at Neumann boundaries
must terminate in normal direction to the (smooth) boundary.
Accordingly, the pattern in Fig. 1(e) can be understood as a
pinned (and probably twisted) scroll wave in the top portion
of the system, a more horizontally oriented filament left of
the anchor, and a down-curving filament terminus near the
lower system boundary. The latter two regions account for the
broad and diffuse feature behind the rod and its spiral-shaped
termination.

The dynamics of scroll waves pinned to moving hetero-
geneities are further analyzed in Fig. 2. Both space-time plots
are constructed from intensity profiles along the trajectory of
the rod but describe an experiment with a negligibly small gap
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FIG. 2. Space-time plot of scroll waves pinned to a moving glass
rod. The intensity profiles are obtained along the trajectory of the rod,
which we denote as the x-axis. The experiments in (a) and (b) differ
only in the gap height underneath the rod, which equals d ≈ 0 and
0.45 cm, respectively. As in Fig. 1, the local gray levels are the result
of light absorption along the entire thickness of the reaction medium.
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FIG. 3. (Color online) (a) Temporal evolution of the filament
length L. Diamonds, triangles, and squares correspond to gap sizes
of d = 0.2, 0.45, and 0.75 cm, respectively. The dashed lines
are obtained by linear regression of these three data sets. The rod
speed is vr = 0.1 mm/min. (b) Velocity of the trailing filament
terminus as a function of the inverse gap size. Open circles and
the square represent data obtained for rod speeds of vr = 0.1 and
0.12 mm/min, respectively. The straight lines are a fit assuming
vt ∝ 1/d (continuous, black), validity of Eq. (4) (dashed, red), and
vt = α/d (dotted, red). Strictly for comparison, the latter expression
estimates the terminal curvature roughly as 1/d . The red lines are not
fits but based on the independently measured filament tension α.

underneath the rod in Fig. 2(a) and the experiment shown in
Figs. 1(b)–1(e) for which d = 0.45 cm. The moving rod itself
generates the bright, diagonal band that connects the lower
left to the upper right corner of the plots. The thinner bright
bands result from excitation waves of the pinned scroll wave.
Notice the V-shaped features left of the rod in Fig. 2(b) that are
absent in Fig. 2(a). These features are caused by the alternating
emission of left- and rightward moving pulses and are hence
evidence for a rotating vortex. Accordingly, they correspond
to the trailing end of the scroll wave filament and allow us to
analyze its position and velocity.

Figure 3 analyzes the elongation of partially pinned
filaments in more detail. Figure 3(a) shows the temporal
evolution of the distance L between the rod and the trailing
filament end for three representative experiments that differ
only in the gap height d. Notice that L is the length of the
filament’s projection into the image plane. The data sets reveal
a linear increase of L. The rate of filament elongation equals
the difference vr − vt between the externally controlled rod

speed vr and the reaction-diffusion-controlled velocity of the
trailing filament end vt . Figure 3(b) shows the latter speed as a
function of the inverse gap distance 1/d. In these experiments,
the rod speed was kept constant at either 0.1 mm/min (i.e.,
1.67 × 10−4 cm/s; open circles) or 0.12 mm/min (open
square). Overall the data are well described by vt = δ/d,
where δ is a free fitting parameter, and yield an average of
δ = 3.0 × 10−5 cm2/s (solid black line). The red lines are
discussed later. Notice that vt cannot be larger than vr and 1/d

cannot be smaller than 1/h (here 0.9 cm−1). The rod speed
appears to have no strong influence on the velocity of the
trailing filament end (but the data point for 0.12 mm/min was
not included in the measurement of δ).

Our experimental results reveal only two-dimensional
projections of the spatially three-dimensional wave patterns
and filament shapes. To obtain a better understanding of
the unresolved vertical dimension, we performed numerical
simulations using the Barkley model [23]:

∂u

∂t
= D∇2u + 1

ε

[
u(1 − u)

(
u − v + b

a

)]
, (2a)

∂v

∂t
= D∇2v + u − v. (2b)

Although this dimensionless model is not derived from a
reaction mechanism, the variables u and v can be associated
to the concentrations of the autocatalytic species HBrO2

and ferriin [Fe(phen)3+
3 ], respectively. Our simulations use

the parameter set (D,ε,a,b) = (1.0, 0.02, 1.1, 0.18), which
generates an excitable system in which stable scroll waves
exist [24]. Since the diffusion coefficients D in Eqs. (2a)
and (2b) are identical, the filament tension obeys α = D

and filaments with small curvature and twist do not move in
binormal direction [24,25]. Accordingly, unperturbed, planar
filaments perform curve-shrinking dynamics within their
initial plane of confinement. All simulations are based on
forward Euler integration with a time step of 6 × 10−3. The
box-shaped system is resolved by 600 × 200 × 150 grid points
at a spacing of 0.2 and has Neumann boundaries. The moving
glass rod is modeled as a translating, cylindrical domain with
(u,v) = (0,0). We neglect the Stokes flow generated by the
heterogeneity because at the given speed (0.1 mm/min), the
fluid motion is noticeable only within a very small region near
the spiral center [21]. For instance, the typical rod speed and
diameter in our experiments cause a creeping flow that decays
to about 10% over a distance of only 1.2 mm, which equals
approximately one quarter of the pitch of the free scroll wave.

Figure 4(a) shows the three-dimensional wave pattern
of a vortex that is partially pinned to a rightward moving
heterogeneity (vr = 0.33). This cylinder extends only through
the top half of the system. Solid (orange) regions indicate that
the local v values are high (v > 0.2) and reveal a strongly
deformed scroll wave with a rotation backbone that extends
from the vortex anchor leftwards. The initial condition of this
simulation was an untwisted vortex with a straight, vertical
filament and a cylinder placement that matched its horizontal
coordinates. The temporal evolution of the wave pattern and
the associated filament dynamics show clearly that the filament
remains pinned to the moving anchor and that it increases
its length at a constant speed (see movies in Supplemental
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FIG. 4. (Color online) Numerical simulation of a scroll wave
partially pinned to a moving anchor. (a) Snapshot of the three-
dimensional wave field v (orange) and the cylindrical heterogeneity
(cyan). (b) Partial top view of the same pattern. (c) Time-space plot
generated from a sequence of images similar to the one in (b). (d)
Superposition of seven filament curves (bluish) obtained from a single
rotation period of a single, representative simulation. The time elapsed
between subsequent curves equals one-seventh (3.0 dimensionless
time units) of the rotation period. The small changes between the
curves are the result of the dynamic nature of the filament that steadily
expands and slightly twists. The anchor moves from the dotted, cyan
position to the solid, cyan position. Fitting of Eq. (3) to the filaments
yields the red (smooth) curve. Movies of the evolving scroll wave and
its filament can be found in the Supplemental Material [22].

Material [22]). Furthermore, we find that its lower terminus
moves rightwards at a speed lower than the speed of the
heterogeneity.

Our simulations allow us to generate two-dimensional
projections that can be directly compared to our experimental
data. For this purpose, we average v over the entire range
of vertical z values for each (x,y) location. A representative
example of the resulting image data is shown in Fig. 4(b). The
snapshot qualitatively agrees with the experimental data shown
in Fig. 1(e). The small differences between our computational
and experimental results are likely due to a more pronounced
twist of the simulated vortex and/or local effects caused by the
Stokes flow in our experiments. Figure 4(c) is a space-time
plot generated from the temporal changes of the projection
data. Its overall structure is very similar to the experimental
results in Fig. 2(b), thus supporting our earlier interpretation.

In the following, we discuss the physical origins of the
observed filament dynamics. Figure 4(d) combines seven
snapshots of the filament obtained during one rotation period
of the vortex. The overall pattern resembles a bundle of helices.
This structure is the result of the local rotation around nearly
circular trajectory and some weak twist caused by the partial

pinning to the translating anchor. The bundle clearly reveals the
stretched out structure of the filament and shows a sharp, nearly
perpendicular transition between a horizontal midsection and
the pinned top portion. At the lower terminus, the filament
is oriented perpendicular to the system boundary and highly
curved. This curvature controls the motion of the trailing end
point according to Eq. (1). We find that the shape of the
filament is well described by an analytical solution of Eq. (1)
that had been previously considered in the context of freely
moving filaments [26] and ideal grain boundary motion in two
dimensions [27]:

x(z) = − α

vt

ln cos

[
vt

α
(z − z0)

]
+ x0. (3)

This curve has a constant hairpin-like shape and moves with
a constant speed vt that is related to the asymptotic, maximal
height w of the curve according to

vt = πα/(2w). (4)

The solid (red) curve in Fig. 4(d) is the best fit of Eq. (3) to
the helix bundle. Notice that we only evaluate data with x <

62 because the abrupt transition to the cylindrical anchor is not
captured by this description. We find that the fit captures the
shape of the filament bundle well and the asymptotic height
(w = 17.3) of the curve is only slightly larger than the gap
(d = 15) between the anchor and the lower system boundary.
Furthermore, the fit yields α = 1.02, which is very close to
the system’s known filament tension of 1.0. We conclude that
Eq. (3) provides a very good description of the shape of the
elongating filaments.

Equations (3) and (4) can also be used to interpret our
experimental measurements of vt if we assume that w = d.
We first establish the filament tension α from independent
experiments in which we follow the free collapse of scroll
rings. In accordance with Eq. (1), the radius R of their
circular filament obeys dR/dt = −α/R and yields α = 2.05
×10−5 cm2/s. On the basis of Eq. (4), this value is used to plot
the dashed, red curves in Fig. 3(b). The graph is nearly identical
with the proportionality fit (black curve) and hence a good
description of the experimental data. For comparison, we also
graphed the dependence expected for a trailing filament that
terminates with a curvature of 1/d, which might be considered
a rough, alternative estimate. The speed of such as termination
point is given by vt = α/d. The slope of the corresponding
curve [red dotted line in Fig. 3(b)] is π/2 times smaller than
the slope predicted by Eq. (4) and does not agree with the
experimental results. Last, we note that Eqs. (3) and (4) are
applicable only to sufficiently elongated filaments as otherwise
our approximation of w = d fails.

In conclusion, we have shown that scroll waves can be
pinned to moving heterogeneities. Partial pinning of a scroll
wave stretches the filament along the trajectory of the anchor.
In this process the terminus of the filament is not stationary
but follows the anchor at a lower speed that is determined
by the filament’s local curvature at the system boundary. For
the investigated conditions, our study strongly suggest that the
latter speed only depends on the size of the gap between the rod
and the lower system boundary (and the system’s characteristic
filament tension). In the framework of this interpretation, the
filament will always expand if πα/(2d) < vr [see Eq. (4)] and
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not converge to a finite, limiting length. This conclusion is
less surprising if one considers that an infinitely long, straight,
and vertical filament is stable in this system. However, very
small distances between the filament and the (upper or lower)
system boundary could affect the filament and complicate this
simple picture due to filament-wall interaction. Accordingly,
it is unlikely that the simple linear function in Fig. 3(b) holds
near these limits (d = h and vt = vr ). Furthermore, for very
short rods (d ≈ h), the scroll wave is more likely to unpin
from the moving anchor. We also note that for our specific
experimental system, larger rod velocities are expected to
cause stronger perturbations due to the Stokes flow near the
moving glass rod. This limitation could be overcome by using
a photosensitive variant of the BZ solution [28] for which the
glass rod could be replaced by a laser beam. Unfortunately,
the latter heterogeneity will not yield a well-defined value of
d and hence cause other complications.

Our study also shows that the filament of the scroll wave
attaches to the lower end of the moving cylinder. This location
is not obvious as termination in normal direction is possible
along the entire length of the glass rod and possibly even
at its cap. We interpret this finding in the light of the
recently reported spontaneous self-wrapping of filaments to
thin, stationary glass rods [19]. This still poorly understood

process stabilizes the attachment of the scroll wave’s rotation
backbone to the entire cylinder, thus favoring a contact point
at the lower end of the rod. It seems possible that the
detachment of scroll waves from moving rods occurs if this
contact point moves in the upward direction. In additional
experiments (not shown), we indeed observed that a sudden
increase in the rod speed can induce detachment but to
date we have no detailed insights into the precise filament
dynamics. Clearly more research is needed to elucidate this
behavior.

The continuation of our work should also demonstrate the
likely scenario that filaments can be stretched out along nonlin-
ear trajectories. The latter result would provide a powerful tool
for preparing arbitrary shapes, including examples that reveal
filament interaction and reconnection events [29]. One can
also envision several other modes of rod translation including
varying penetration depths, random motion, and paused
displacements. The systematic investigation of the resulting
scroll wave dynamics will provide interesting challenges for
future experimental and computational studies.
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