External forcing of spiral waves

Viadimir S. Zykov,® Oliver Steinbock,” and Stefan C. Mulier
Max-Planck-Institut fiir Molekulare Physiologie, Rheinlanddamm 201, D-44139 Dortmund, Germany

(Received 12 April 1994; accepted for publication 12 July 1994)

The effect of an external rhythm on rotating spiral waves in excitable media is investigated.
Parameters of the unperturbed medium were chosen, such that the organizing spiral tip describes
meandering (hypocyclic) trajectories, which are the most general shape for the experimentally
observed systems. Periodical modulation of excitability in a model of the Belousov—Zhabotinsky
(BZ) reaction forces meandering spiral tips to describe trajectories that are not found at
corresponding stationary conditions. For different modulation periods, itwo types of resonance drifi,
phase-locked tip motion, a spectrum of hypocyclic trajectories, and complex multifrequency
patterns were computed. The computational results are complemented by experimental data
obtained for periodically changing illumination of the photosensitive BZ reaction. The observed
drastic deformation'of the tip trajectory is considered as an efficient means to study and to control

wave processes in excitable media.

.. INTRODUCTION

Spiral waves rotating in excitable media belong to the
basic spatiotemporal patterns in nonequilibrium systems.
They are observed in many biological media, such as cardiac
tissue," chicken retina,® the cellular slime mold Dictyostel-
ium discoideum,” or in the cytoplasm of Xenopus oocytes.”
They exist in distributed physicochemical systems, for in-
stance, in the Belousov—Zhabotinsky (BZ) solution®’ and on
platinum surfaces® used to catalyze the oxidation of carbon
monoxide,

An excitable medium can be considered as a network of
nonlinear oscillators coupled by ditfusion. A spiral wave is
the result of the self-organization of a large number of such
active elements due to their local interaction. The appearance
of a spiral wave creates a specific source of nonlinear oscil-
lations in an active medium that contains both temporal and
spatial features in close interplay. The spatiotemporal char-
acteristics of the spiral wave is determined by the properties
of the medium, and, if the size of the medium is sufficiently
large, do not depend on the boundary conditions. buch Spis
rals can rotate rigidly around a fixed circular core.’ But, for
another state of the medium, this core drifts in space, which
leads to a compound rotation,'®'* or even to irregular
motion,!>!* of the spiral tip. Thus, the spiral wave exhibits
quite nontrivial dynamic properties, even for the familiar
case of a stationary excitable medium.

All realistic media are embedded in some environment
and thus undergo external forces and fields. Under this aspect
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waves under nonstationary conditions, Nonstationary re-
gimes can also be considered as an effective means to control
the spiral wave, for example, to move the core of the spiral
wave through the medium. !>’

In this paper we study the effect of periodic variations of
the medium parameters on the dynamics of the spiral waves,
To this end we focus on the investigation of wave processes
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in the light-sensitive BZ reaction, which proves to be par-
ticularly suited for the external forcing.ls‘r"ﬁ We will use both
computer simulations of the corresponding mathematical
models and direct experimental observations of the spiral
waves in the distributed BZ system. Thereby, we consider
the BZ reaction as a laboratory case for the study of general
properties of excitable media.

If. MATHEMATICAL MODEL

Many of the guantitative features of the BZ reaction can
be explained by the kinetic description (Oregonator model)
put forward by Field, Kérors, and Noyes®! and Tyson.?? This
classical scheme includes the autocatalytic production of
HB:rO, with Ce(1v}, used as a catalyst. The Br™ ions play the
role of an inhibitor. In the light-sensitive BZ reaction, the
catalyst Ce(lv) is replaced by the ruthenium—bipyridyl
cemp]ex,23 24 which promotes the autocatalytic production of
the activator HBrO, only in its reduced and electronically
unexcited state. Once the ruthenium complex is photochemi-
cally excited, it slowly catalyzes the production of the inhibi-
tor bromide. Thus, externally applied illumination creates an
additional source of inhibitor Br~, and thus suppresses the
excitability of the medium (for instance, it decreases the
propagation velocity of excitation waves). The correspond-
ing system of differential equations that describes these pro-
cesses has the following form:%*

du
dt

dv
dr

—=p—ul-w(u~ q),
=y—yp, (n

w
T =fo-wluta)+ e,

where the variables u, v, and w describe the evolution of the
HBrO,, catalyst and bromide concentrations, respectively.
The term ¢ represents the light-induced flow of Br™. For
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Tyson’s “Lo” set of rate constants,” the order relation
&' <€eg<€] is valid. As a consequence, w can be assumed in
quasiequilibrium, so that '
futd
w= . (2)

utgqg

Hence, one can reduce the system (1) to the modified two-
variable Oregonator and include molecular diffusion: .
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Here the Laplacian VZu describes the diffusion of the
HBrO,, while the catalyst is considered to be immobilized in
the gel matrix. The term $()=¢y+A sin(2m/T,,) deter-
mines the periodical modulation of the additional Br™ flow
with the modulation period T,,. The amplitude A of modu-
lation has to be smaller than the constant flow ¢, because
the additional Br™ flow is always positive. The parameters
€=0.05 and ¢=0.002 are fixed, and the actual values of the
parameters f, A, and ¢, are indicated in the following com-
putations. These were performed by the explicit Euler
method, with the five-point approximation of the Laplacian
on a 380x380 array with a grid spacing Ax=0.1 and time
steps Ar=0.001.

lll. RIGID ROTATION AND RESONANCE

Rigid rotation is the simplest regime of spiral wave mo-
tion. Such a rotation occurs with a constant angular velocity
around a ring-shaped core. The shape of the spiral wave does
not change with time. A kinematical description of this rota-
tion was elaborated, taking into account the velocity—
curvature relation for the propagating front. >

The angular velocity and the size of the core should
depend on the parameters of the medium. Hence, if the pa-
rameters of the medium suddenly jump to other values the
trajectory of the spiral tip will approach with time a new
circular path with a modified radius and a slightly displaced
center. For the case of periodical variation of the parameters,
such deviations of the center location should be accumulated
in the course of time.

In Fig. 1, two examples of this type of tip trajectory are
shown, computed for the model (3), with two different val-
ues of the frequency of external forcing. In both cases the tip
moves along a cycloid, while, for the given parameters f and
¢y, the unperturbed spiral rotates rigidly. Fence the observed
periodical changes of the curvature of the spiral tip trajectory
are induced by small variations of the additional flow of
bromide ions. The resulting curve includes rotation of the tip
around a circle with radius ry as for the unperturbed case,
and a motion of the center of the circular core on a large
circle with radius R...

Such a phenomenon was described in the framework of
the kinematical theory of wave processes in excitable media
and is called resonance of the spiral wave.?® It was shown in
the limit of a small-amplitude A of the external forcing, that

FIG. 1. Resonance drift of the spiral wave under an cxternal modulation
computed for model (3) with f=23.5, ¢;=0.01, and modulation amplitude
A =0.0002. Modulation period: {a) T,,=6.6 and {b) T,,=6.7. Scalc bar: 10.0.

the radius R is inversely proportional to the difference be-
tween the autonomous frequency w, of the unperturbed spiral
and the frequency of external force w,,:

4

R~ — @
¢ W= Wy, .

Note that the sign of R, differs for w,<<w, and for
w,,> o, (see Fig. 1). For the case w,, = w, (full resonance),
the core center moves along a straight line. The velocity of
the core motion is proportional to the amplitude of external
forcing A, and its direction depends on the initial phase of
the spiral wave,

IV. CYCLOIDAL MOTION OF SPIRAL WAVES

Rigid rotation during which the spiral tip describes a
circular trajectory is not the only possible regime of a spiral
wave in a stationary excitable medium. In fact, for the ex-
periments with the BZ reaction, cycloidal trajectories are ob-
served more often'®'% 1* than the rigid rotation. Simulations
of spiral waves using different kinds of models for excitable
systems'>*"~** show that this is a common rule: cycloidal
motion is a general case, while rigid rotation can be observed
in the limiting cases of low excitability or small refractori-
ness of a medium.

Cycloidal regimes are observed in the model (3) for a
wide range of parameter values f: 1.0<<f<3.0. In the fol-
lowing, we fix the value to f=2.0 and study the role of
external forcing imposed on the spiral wave behavior.

The three different cycloidal trajectories of the tip shown
in Fig. 2 were computed for different values of the time-
independent parameter ¢y in (3) and for zero modulation
amplitude. Such trajectories can be roughly approximated by
hypocycloids,'®~'? including two general frequencies w, and
Wy -

X=R; cos w It R, cos wst,

&)

y=R sin @ 1~R; sin w,!.
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FIG. 2. Trajectories of the wave tip computed for model (3} with f=2.0

without extcrnal modulation (4 =0.0) for three different valucs of the sta-
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The primary component of this compound motion can be
interpreted as the tip rotation around a core with radius R,
while the secondary component describes the motion of the
core center around another circle with radius R,>R,. It is
important that for a hypocycloid the secondary motion is
clockwise, i.e., opposite to the counterclockwise primary ro-
tation.

Let us now assume that the hypocycloid is closed after a
time interval T and contains N lobes. In the simplest case the
trajectory is closed after only one rotation period of the sec-
ondary motion and ¥ is the general parameter of the trajec-
tory. But in a more general case, it takes M rotations and the
number 1 of lobes per one rotation of the secondary motion,

n=N/M, (6)

is an important characteristic feature of the hypocycloid.
This number determines, for instance, the ratio of the two
frequencies w/w,. Indeed, the frequency of the secondary
motion is

wy=27M/T, (7

since M is the rotation number for the secondary motion,
The rotation number for the primary motion is N—M, be-
cause this rotation has the opposite direction with respect to

d Th £, +h di 1
the secondary one. Therefore, the corresponding angular ve-

locity is

o =27(N-M)/T, (8)
and the ratio of the two frequencies is given by the formula
wi/w;=n—1. &)

Due to the central symmetry of the hypocycloid, it is
obvious that during the total period T the wave front passes
N times through the central point. Therefore, the period of
excitation Ty that can be measured in the center of the hy-
pocyclic trajectory is equal to

Ty=T;/n, (10)

where T,=T/M is the period of the secondary motion.

But one can also measure another period of excitation
T. i a point of the medium far away from the symmetry
center. This value is inversely proportional to the number of
rotations of the spiral wave completed during one total pe-
riod T. As mentioned before, this number is N —M because
of the opposite directions of the primary and the secondary
motion. Hence, the following expression is valid:

To=T,/(n—1). (11)

We emphasize that this value is equal to the period of the
primary motion T;=2%/w,, as follows from (9) and {11):

Too=T1 . (12)

Thus, the period of excitation measured in the symmetry
center of a hypocyclic trajectory Ty is smaller than the period
T.. measured far away from the center. Indeed, the period T
can be expressed from (10) and (11) as

To=Ta{n—1}/n. (13)
Finally, there -are five numbers that specify the temporal
characteristics of the tip trajectory: Ty, To,, Ty, T3, and a.
The first two can be directly measured in the experiment, and
the last three can be estimated by detailed analysis of the tip
trajectory. Only two of these values are independent because
they obey the three equations (11)—(13).

If the hypocycloidal trajectory is not closed, the quantity
n is an irrational number, In this case, one needs to choose
some approximation in terms of a rational number, and then
the previous consideration is applicable.

V. PRIMARY AND SECONDARY RESONANCE

The resonance for a compound rotation should be more
complicated than the resonance for a rigidly rotating spiral
wave, since the compound rotation is characterized at ieast
by two different frequencies. In fact, our computational re-
sults demonstrate for this case the existence of two possible
resonance regimes.

One can observe the primary resonance when the modu-
lation period is close to the value T, , which can be mea-
sured far away from the center of the unperturbed trajectory.
As mentioned above [see (12)], this value is equal to the

FIG. 3. Resonance drift of the spiral wave (primary resonance) computed
for modet (3} with £=2.0 G =0.01_and moadulation amnplitude A =0.0001

odel 2.0, ¢4=0.01, and modulation am plitude A =0.0001,
Modulatien period: {a) T,,=3.56, (b} T,,=3.57, and (c) T,,=3.58. Scale bar:
10.0. In (b} every fifth lobe of the trajectory is blacked out to indicate a
rotation accompanying the drift, ‘
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FIG. 4. Resonance drift of the spiral wave (sccondary resonance) computed
for model (3} with f=2.0, ¢¢=0.01, and modulation amplitude A =0.0005.
Madulation period: {a) T,,=13.0, (b) T,,,=13.1, and (¢) T,,=13.3. Scale bar:
10.0. .

period of the primary motion T, . In Fig. 3, three examples of
the tip trajectories are shown that were computed for the
model (3), with external forcing with periods close to T.
The corresponding unperturbed trajectory is presented in Fig.
2(b}. The maximum and minimum of the additional bromide
flow lie inside the range of the constant flows that corre-
spond to the trajectories in Figs. 2(a) and 2(c). Hence, only
small variations of the tip trajectory can be expected during
one period of the external forcing. But these variations are
accumulated with time. '

In Fig. 3(b}, the phenomenon of a full primary resonance
takes place. For T',,=T,,, the symmetry center of this trajec-
tory moves with time along a practically straight line. For
T, <T. [Fig. 3(a}], the trajectory of the symmetry center is a
circle with a radius R <0, while for T,,>T,, it is a circle
with a radius R >0 [Fig. 3(c)]. The velocity of the resonance
drift becomes two times smaller when the amplitude of the
external influence is reduced to half its value,

Hence, this primary resonance obeys the relationship (4)
derived for the case of resonance under conditions of rigid
rotation. But the final picture is much more complicated. The
unperturbed trajectory is not only shifted with time, but it
also rotates. One can follow this rotation by marking every
fifth lobe of the trajectory, as is done in Fig. 3(b).

A qualitatively different resonance regime is observed
when T, is close to the period T, of the secondary motion
along the unperturbed trajectory (see Fig. 4). In this case, the
resonance drift along a straight line exists as well [Fig. 4(b}],
and its velocity is proportionat to the external amplitude. But
for T,,<T,, the symmelry center of each five-lobed frag-
ment describes a circle with radius R >0 [Fig. 4(a)] and for
T,,> T, one has R <0. Obviously, the secondary resonance
cannot be described by the expression {4}, but it is necessary
to change the sign in this formula.

The reason for this discrepancy is the following: The
expression (4) is valid for the rigid counterclockwise rota-
tion. For the clockwise rotation, the sign of R, in (4) should
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EIG. 5. Variations of the tip velocity with respect to the additional flow of
bromide induced by light computed for the casc of (a) the primary resonance
and {b) the sccondary resonance (of. Figs. 3 and 4, respectively).

be changed. The primary resonance is a result of the external
influence on every lobe of the meandering spiral. Each indi-
vidual lobe describes a counterclockwise rotation in our
computations. Hence, the formula (4) should be valid for the
primary resonance. The secondary resonance presents the re-
sult of external forcing with a period close enough to the
period of the secondary motion. But this motion proceeds in
a clockwise manner, as mentioned above. Therefore, the sign
in the formula (4) should be changed to describe the second-
ary resonance.

As a significant result, both for the primary and the sec-
ondary resonances, no synchronization between the phases
of tip motion and external forcing is realized. To illustrate
this fact, the tip velocity is plotted in Fig. 5 as a function of
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FIG. 6. Variations of the tip velocity with respect to the additional flow of bromide computed for model (3) with f=2.0, ¢=0.01, and modulation amplitede
A =0.005. The modulation period is: (a) T,,=0.95, (b} T,,=1.4, (¢) T,,=3.63, and (&) T,,=6.0.

the external intensity. The value of the tip velocity oscillates
in time, but the phase of these oscillations is not synchro-
nized by the external forcing. The temporal picture in Fig. 5
looks like a disordered motion, although the spatial motion
of both the secondary and primary resonance drift (Figs. 3
and 4) is well ordered.

VI. SYNCHRONIZATION OF SPIRAL WAVES

The phenomenon of synchronization of the spiral wave
by external periodical forcing was discovered recently.*
This effect is illustrated by Fig. 6, in which the spiral tip
velocity is plotted as a function of the intensity of external
forcing for different values of the modulation period. In sev-
eral ranges of the modulation period, one can observe phase-
locked motion for the given amplitude A of the external sig-

nal. In Fig. 6(c), the frequency of the oscillation of the tip
velocity is equal to the external frequency. In Fig. 6(a) [resp.
Fig. 6(b)], synchronization also occurs, but the tip velocity
oscillates with a frequency that is three times (resp., two
times) smaller than the external frequency. An example of a
synchronization with a frequency two times larger than the
external one is shown in Fig. 6(d).

In principle, similar effects are well known for a single
nonlinear oscillator.>!** But for the spiral wave, such tempo-
ral synchronization leads to nontrivial spatial behavior that
cannot be reduced to the case of one spatial dimension. In-
deed, the synchronization is accompanied by a very strong
deformation of the tip trajectory, until even an unrestricted
spatial motion occurs.

The main family of trajectories detected in our compu-
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FIG. 7. Tip trajcctorics computed as a response to sinusoidal modulation of the additional flow of bromide. Trajectories (not to scale) are shown in the plang

spanned by the amplitude A and the period T, of modulation. Dashed lines indicate boundaries of entrainment bands related to different ratios //m, whcrc !
is the number of tobes per s periods of the modulation. Here, T s the intrinsic period of the unperturbed meandering spiral. The thick vertical bar indicates

the region of primary resonance.

tations is shown in Fig. 7. The shape of the trajectory de-
pends on both the amplitude A and the period T, of the
external modulation. The dotted lines indicate the boundaries
of the so-called Amnold tongues. Inside these tongues the
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fined ratic of the number of the lobes per one modulation
period.

The broadest tongue (1/1) includes the trajectories with
just one lobe per one modulation period {compare Fig. 6(c)].
It is important to peint out that the root of this tongue corre-
sponds to the value of the modulation period 7,=T;. As
mentioned before, T is the excitation period measured in the
symmefry center of the unperturbed hypocyclic trajectory. In
the limit of a small modulation amplitude, the synchroniza-
tion is observed in a very narrow interval of modulation
periods around the value 7'y. The difference between the
trajectory of the synchronized motion, and the unperturbed
one is negligible. The width of the synchronization band in-
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range of deviations in the trajectory increases, as well. For
the value A =0.005, this leads to practically unrestricted spa-
tial motion near the right boundary of the Arnold tongue (see
Fig. 7). The tip trajectory observed for such a parameter set
describes many lobes located along a circle with a very large
radius. Near the left boundary of the same Arnold tongue, the
trajectory is also strongly deformed. But in this case the
number of lobes is smaller than for the unperturbed trajec-
tory. Of course, the number of lobes for a hypocycloid can-
not be smaller than two. For the amplitude 4 >0.005, the
number of lobes observed near the left boundary of the syn-
chronization band is smaller than three and rather close to
the theoretical limit. Indeed, for A =0.005 we observed a tip

i antarizad h tha Inha numhar
trajectory that can be characterized by the lobe number n

=% . Therefore, this hypocyclic trajectory is closed and in-
cludes eight lobes, but the trajectory describes three whole

rotations around the center. In this sense, the ratio n=>5~2.66
specifies the number of lobes per one rotation around the
center. For A=0.008 the minimal number of lobes is
n=3%=233 for the trajectory computed with T,,=2.0 (see
Fig. 7).

Another Arnold tongue (2/1) includes the trajectories
that describe two lobes per one modulation period [compare
Fig. 6(d)]. The root of this tongue corresponds to the value
T,,=2XT,. For a very small external amplitude, the defor-
mations of the unperturbed trajectory are, generally speak-
ing, also small. But even a small deformation can result in
the appearance of trajectories that look rather exotic. For
instance, the trajectory computed for T,,=5.6 and A =0.002
{see Fig. 7) includes 14 lobes, which are arranged in a per-
fect symmetric order. For a larger amplitude (4 =0.005 or
A=0.008) we observe trajectories in which the lobes are
grouped in pairs. These pairs of lobes can be organized in
space in a surprisingly complex manner.

In the left part of Fig. 7, two Arnold tongues { 1) and (1)
are shown [compare Figs. 6{a) and 6(b}), respectively]. They
are not as broad as the two tongues just described and the
deformation of the unperturbed trajectory is less pronounced.
The roots of these tongues correspond exactly to T,=T o3
and 7,=Ty/2. In this we find an additional proof that,
namely, the value T, which is measured in the center of the
unperturbed trajectory, determines the observed synchroniza-
tion processes.

We recall that an external modulation with the period
To=Tyn/(rn—1) results in the primary resonance [Eq. (13)].
In Fig. 7, the resonance zone is shown by a dark solid line.
When choosing different amplitudes the primary resonance

necnre for almnot the eama madnlatinn marind Thorafara +ha
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resonance zone is practically parallel to the ¥ axis and inter-
sects the boundary of the Arnold tongue. In the vicinity of
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FIG. 8. The tip trajectory computed for thc modulation period T,,=3.63,
which is close to T, . The amplitude A =0.003 is chosen inside the broad-
" est synchronization band.

this point of intersection, the resonance regime and the syn-
chronization regime should coexist.

The tip trajectory in this region was inivestigated in detail
and a characteristic example of such a trajectory is shown in
Fig. 8. The initial part of the trajectory is very similar to the
resonance trajectory (see Fig. 3). The synchronization is ab-
sent during the first several Iobes, but in the course of time
the synchronization becomes effective and the trajectory ob-
tains the shape of a hypocycloid typical for the synchroniza-
tion band. It appears that the resonance regime is unstable for
the parameter region inside the Arnold tongue, whereas the
synchronization regime is stable.

VIi. IRREGULAR MOTION

Irregular motion is the most probable dynamical regime
in an externally forced excitable medium, In fact, any small
variations of the parameters of the medium will change both
the wave front velocity and the angular velocity of the tip,
and thus will disturb the regularity of the unperturbed trajec-
tory. At least two quite different irregular regimes were ob-
served.

The first possibility corresponds to the case when the
value of the external period is somewhat too large with re-
spect to Ty, the period at the center. Then one can observe
slow variations of the unperturbed trajectory in the range that
corresponds to Figs. 9(a} and 9(c). This is certainly an ex-

FIG. 9. Irregular tip trajcctory computed for model (3) with f=2.0,
¢ =0.01, and modulation amplitude A=0.005. The modulation period is
T,=40.0.

FIG. 10. Irrcgular tip trajectory compwied for model (3) with f=2.0,
$o=0.01, and modulation amplitude A =0.005. The modulation period is
T,=54.

m

ample of an irregular motion, although the variations of the
spatial characteristics of the tip motion are not strong. The
tip moves in a restricted territory having a similar size as that
of the unperturbed trajectory.

Another type of an irregular metion is observed when
the value of the modulation period is about ZXTy. An ex-
ample of such type of motion is shown in Fig. 10. In this
case, the tip describes a highly complex trajectory, and the
domain in which this motion occurs becomes very large.

If the modulation period is smaller than T,/3, the exter-
nal forcing practically does not change the unperturbed tra-
jectory. The variations of the parameters are too fast, and
they are simply time averaged.

The trajectories shown in Fig. 7 indicate that the phe-

" 1 _ - .
nomena of synchronization and 1rregular motion are more

general than the resonance effects. Indeed, the thick line in
Fig. 7 indicates the domain in the parameter space corre-
sponding to the primary resonance. This domain is very nar-
row with respect to the considered parameter range of exter-
nal influence. As a consequence, in the experiments with the
BZ reaction, the existence of the phenomenon of synchroni-
zation should be examined more easily than the resonance
effects.

Vill. EXPERIMENTS

In our experiments we used a photosensitive version of
the BZ reaction using Ru(bpy)s>~ as a catalyst.

In the experiments, Ru(bpy);”* (4 mM) was immobi-
lized in a silica-ge! matrix® (thickness 0.7 mm, diameter 7
cm). The reactant concentrations (disregarding bromination
of malonic acid) were 0.09 M NaBr, 0.19 M NaBrO,, 0.17

M malonic acid, and 0.35 M H,S0,. The temperature was
Trant fiverd at (23i1 °C}_ White lieht (haloeen lamn. 150 W)
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illuminating the entire observation area was polarized by a
rotating polarization filter and applied to the active medium
through a tilted glass plate. Due to polarization, the intensity
of the teflected light depends on the orientation of the polar-
ization vector. For the given experimental conditions, the
maximum of the light intensity was about 1.36 mW/cm?,
while the minimum was 0.49 mW/em”. The two-dimensional
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FIG. 11. Sequence of tip trajectories measured in the light-sensitive BZ
reaction under sinusoidal modulation of light intensity with amplitude 0.44
mW,’cm and perlod T,,. (a) 17.0, (b) 241 (c) 26.2, (d) 29.0, (e) 304, ()
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transmission of the medium was detected by a charge-
coupled-device camera (Hamamatsu C3077) at 490 nm;
stored on a video recorder, and finally digitized by an image-
acquisition card.

A spiral wave was created by using a thin laser beam
that strongly suppresses the excitability in a small segment of
the medium. A prepagaung circular wave front is broken by
collision with such a segment. This creates two open ends of
the wave and two spirals rotating in opposite directions are
initiated. One of the spirals can be removed by shifting one
of the open ends to the boundary of.the dish.'® The temporal
trace of the wave tip was detected visually with a reticle in
digitized images. The trajectory observed under illumination
with an intermediate value of the light intensity of (.93
mW/cm? was an almost five-lobed hypocycloid with a wave
period Tp=24.5 s at the center of the meandering pattern.
Decreasing the stationary level of the illumination down to
0.49 mW/cm?, or increasing it up to 1.36 mW/cm?, ieads to
only relatively small variations of the spatiotemporal behav-
ior of the spiral wave. When applying the minimum and
maximum (stationary) intensity, we observed four- and six-
lobed trajectories, respectively (similar to Fig. 2).

A rotation of the polarized vector with a constant angular
velocity results in a periodical sinusoidal modulation of the
illumination. Such periodic forcing induces very strong de-
formations of the unperturbed trajectory, even though it oc-
curs within the same range of the applied light intensity as
for the just mentioned stationary case. In Fig. 11, several
characteristic examples of the tip trajectories recorded for
different values of the modulation period are shown. This
family of trajectory shapes is very similar to the computer
results obtained for the amplitude of external forcing
A=0.005 (see Fig. 7).

The trajectories in Figs 11(b}-11(g) are the members of
one broad synchronization band with one lobe per one exier-
nal cycle. The trajectory in Fig. 11(h) presents an example of

the subsequent synchronization band with two lobes per one

1.8F 1

RADIE R, R, (mm)
2

06 - b

0.2 : * 4

24 26 28 30 3z 34
ATION PERIOD T _ (s)

m

FIG. 12. Radii of the primary and the sccondary motion (R, and R,, re-
spectively) as a function of modulation period T, -

external period. In the period range between these two bands,
a strongly irregular shape of the trajectory was observed.
Figure 11(a) gives an example of the trajectory with one lobe
per two external periods.

In order to specify quantitatively the variation of the
trajectory shapes with the increase of the modulation period,
we used the description of a hypocyclic trajectory given in
(5). Each trajectory that belongs to the main entrainment
bands was represented by polar coordinaies (r,¢). The ori-
gin of the coordinate system was placed in the symmetry
center of the hypocycloid. Two oscillating functions, »(r)
and ¢(t}, determine the trajectory in a parametric form. The
maximum value of #(#), r.., and the minimum one, r_;,,
were estimated and wused to determine the radii
Ri=(rmax—Fmin)/2 and Ro=(r g t7min/2. The results of
these calculations are presented in Fig. 12 in terms of the
functions R(7,,) and R,(T,}.

According to this figure the radius R, which character-

izes the primary motion, is practically the same for any pe-

“riod of the external modulation. On the other hand, the radius

R, grows rapidly when the modulation period T,, is in-
creased.

The time interval between the Iocal extrema of the func-
tion r(t) determines the period T, which can be also mea-
sured directly in the center of the trajectory. This period was
analyzed for different values of T,,. As shown in Fig. 13, the
value Ty remains practically equal to the value of the exter-
nal period T,

The angular velocity of the secondary motion e, was
estimated by determining the average value of d¢/dt over
several periods of the primary motion. The results for the
cnrresnnndmg nf:nr_)d T,.----?'::r/‘mn are shown in F‘u:r 14, The
period T, increases rapldly w1th T,, and appears to be an
exponential function of T,,.

Finally, Eq. (10) was used, for estimating the number of
lobes » per one rotation period of the secondary motion. On
the basis of the data displayed in Figs. 13 and 14, we ob-
tained function n(7,,) that is shown in Fig. 15. Just as the
period T, the number of lobes n also increases rapidly with
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FIG. 13. Period of excitation T measured in the center of a hypocyclic
trajectory for diffcrent values of modulation period T, .

T,.. This function describes quantitatively the effect of the
deformation of the tip trajectory under external forcing that
was presented qualitatively in Fig. 11.

Thus, the deformation of the unperturbed trajectory ob-
served in the experiments is caused mainly by changing the
parameters of the secondary motion, R, and T, whereas the
parameters of the primary motion remain practically the
same for the different values of the external period T,,. The
strong increase of R, leads to a pronounced enlargement of
the territory of the medium into which the tip is carried by its
complex motion.

IX. CONCLUSIONS

A variety of interesting features are observed in the be-
havior of the spiral waves as a result of external forcing of an
excitable medium. The observed effects of resonance, syn-
chronization, period doubling, or irregular motion are very
common in nonlinear oscillating systems. It is shown, how-

500

400} ' .

3001 4

200

PERIOD T, (s)

100

0 25 25 30 35 34
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FIG. 14. Period of the secondary motion T, estimated from the experimen-
tal data as a function of modulation period 7, .

14 T T v T T

10f _ W

NUMBER OF LOBES 11

2 2R T —35 35

MODULATION PERIOD T (s)

FIG. 15. Number of lobes 7 ¢stimated by Eq. (10), with the data from Figs.
13 and 14 as a function of modulation period T, .

ever, that spiral waves submitted to external forcing exhibit
nontrivial dynamtic properties and that the resulting spa-
tiotemporal patterns observed in computations and experi-
ments have no direct analogies in the known scenarios of
nonlinear oscillators.

Under external forcing of an active medium there occur
simultaneously changes in the propagation velocity, the an-
gular velocity and the curvature of the tip trajectory, the re-
fractoriness, the threshoid of excitation, and so on. These
values depend not only on time, but differ within the me-
dium. The most probable response of the system in such a
situation is an irregular motion of the spiral wave tip (see
Figs. 9 and 10). But our computations prove the existence of
well-organized regimes: the primary and the secondary reso-
nance and the synchronization of the spiral wave by external
forcing.

For the primary and the secondary resonance, the tem-

.| st £ the t1 i i
poral oscillations of the tip velocity are not synchronized by

the external forcing, nevertheless, the trajectory is weil orga-
nized in space. The shape of the unperturbed trajectory is not
changed significantly: it is only displaced and rotates with
time. For both kinds of resonance, the drift velocity is pro-
portional to the external amplitude. The primary resonance is
detected in a very restricted range of the external period, and
occurs only for sufficiently small amplitudes (see Fig. 7). If
the amplitude is too large, the resonance becomes unstable,
and a transfer into the synchronization regime takes place

. that modifies the tip trajectory drastically.

The synchronization effects are characterized by the ex-
istence of Arnold tongues (see Fig. 7). The deformation of
the tip trajectory can be very strong, leading to the appear-
ance of an infinite motion of the spiral core. This phenom-
enon was experimentally observed and studied in the light-
sensitive BZ solution. It was shown that the external forcing
mainly affects the parameters of the secondary motion of the
tip, while the parameters of the primary motion remain prac-
tically 'unchanged.

From a formal point of view, the different kinds of the
observed regimes can be explained in terms of variations of
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the trajectory curvature. For the rigid rotation the curvature
of the tip trajectory is constant. Small periodic variations of
the curvature create a cycloidal trajectory and the resonance
drift. If the unperturbed trajectory is a cycloid, the curvature
is an oscillating function of time and the external forcing can
synchronize this nonlinear oscillator. A mechanism for the
synchronization is a problem currently under consideration.
But such a general kinematical description of the spiral wave
dynamics proves that the effects of the synchronization and
the resonance are very common for excitable media that
should result from different kinds of external forcing. Thus,
the external forcing is very useful to study the dynamical
features of excitable media and is an efficient means to con-
trol spiral wave behavior.
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