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Evidence for Burgers’ equation describing the untwisting
of scroll rings
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Abstract – We study the dynamics of rotating scroll waves in three-dimensional excitable systems.
Experiments are carried out with the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction and
wave patterns are measured using optical tomography. We create twisted scroll rings for which the
rotation phase varies along their circular rotation backbone and measure the untwisting dynamics
of the collapsing structures. Experimental data reveal the formation of an asymmetric, plateau-like
phase profile with a growing region of leading phase and a shrinking region of lagging phase. The
experimental data support a quantitative description in terms of a nonlinear diffusion equation.
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In three-dimensional excitable media, most wave
patterns are organized by scroll waves. They are the
dominant self-sustaining wave source and analogous to
rotating spirals in two dimensions. These rotors have been
observed in numerous biological systems such as the cellu-
lar slime mold Dictyostelium discoideum [1,2], cardiac
tissue [2,3], and retinal neurons [4]. Moreover, scroll
waves have been linked to ventricular arrhythmias [5] and
sudden cardiac death in humans. Fully understanding
these systems clearly requires the characterization of the
dynamics of scroll waves.
Scroll waves rotate around one-dimensional curves,

called filaments, and the system is adequately described
by the spatio-temporal behavior of these lines [6]. The
reduction of a complex three-dimensional pattern to a
one-dimensional curve has allowed beautiful theoretical
descriptions [7]. Recent experimental work has tested some
of these results for curved, but untwisted, filaments [8,9],
including the collapse of scroll rings. The influence of
gradients in rotation phase along the filament, called
twist, has been described theoretically by Burgers’ equa-
tion [10,11] and studied qualitatively in experiments [12].
A measurement of the average twist was made earlier [13];
however, the local twist dynamics have yet to be quantified
in experiments.
The nonlinear diffusion equation, or Burgers’ equa-

tion, is
ut+uux = duxx, (1)
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where u is a one-dimensional field, the subscripts t and
x denote partial differentiation with respect to time
and space, respectively, and d is a constant diffusion
parameter. This equation was originally proposed in
hopes of modeling turbulence in fluid flow [14]. While
ultimately unsuccessful in the field of fluid turbulence,
Burgers’ equation has more recently been applied to a
number of other systems including interface growth [15],
cosmology [16], and traffic flow [17,18]. For excitable
media, a form of eq. (1) was derived to describe the
spatial coupling of the oscillation phase along the filament
of a scroll wave [10,11]. Here we report experiments in an
excitable medium that can be explained by the effects of
the nonlinear term in eq. (1) on the untwisting dynamics
of a twisted scroll wave filament.

Experiment and analysis. – Experiments employ the
autocatalytic 1,4-cyclohexanedione Belousov-Zhabotinsky
(CHD-BZ) reaction [19]. Initial concentrations of reagents
are as follows: [H2SO4] = 0.6M, [NaBrO3] = 0.18M,
[CHD] = 0.19M, and Fe[batho(SO3)2]

−4
3 = 0.475mM. The

reaction is carried out in a viscous polyacyrlamide
solution.
Scroll rings are generated using a technique that exploits

the system’s anomalous dispersion and specifically the
“merging” of trailing wave pulses within the wake of
a slower leading pulse [8,9]. This procedure involves
the initiation of three half-spherical waves from small
silver wires. The first two waves collide and create an
hourglass-shaped wavefront with an equatorial hole. The
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Fig. 1: (a) Single projection through the three-dimensional
BZ medium. The spirals on the right and left edge of the
scroll ring are out of phase with each other. (b) Cutaway of
a three-dimensional reconstruction of the BZ system shortly
after initiation of a twisted scroll ring. The spirals at the top
and bottom are at different phases. (c) The same scroll ring
at a later time. The ring is smaller and the spirals at the top
and bottom nearly oscillate in phase. The volume of the three-
dimensional plot is 7.3× 8.2× 11.7mm3.

third, trailing wave vanishes in the wake of its prede-
cessor but a small segment survives within the hole.
Subsequently, the rim of this wave cap begins to curl,
thus, nucleating the desired scroll ring with a period of
approximately 30 s.
In this study the third wave is initiated off-center

from the wave it merges with creating a time delay in
spiral initiation along the ring. This time delay induces a
gradient in the rotation phase and the result is a twisted
scroll ring with a leading phase at the earliest and a lagging
phase at the latest points of vortex initiation. In most of
our experiments, the phase difference between the leading
and lagging phase is just over 180◦. The phase increases
along the filament backbone until it comes to a maximum
and then decreases and returns to its starting value as
one revolution around the ring is completed. This scenario
must be clearly distinguished from Möbius-like filaments
for which the phase would complete a full 2π increase
around the ring.
A representative snapshot through such a pattern and

three-dimensional reconstructions are shown in fig. 1.
The two latter figures are generated by taking 62 snap-
shots through the cylindrical sample at equally spaced
angles over the course of 5 seconds. The images are
then back-projected with an inverse radon transform and
filtered [9]. This process follows an approach pioneered by

Winfree [20] and yields three-dimensional reconstructions
of light absorption patterns (figs. 1b and c).
Two-dimensional slices normal to a scroll wave filament

contain a spiral rotating around a quiescent core with some
rotation phase, φ. In our experiments, the core region is
small enough that we can estimate the location of the
filament by the tip of a spiral at a particular instant.
The rotation phase may vary for different slices and its
gradient along the filament defines the twist, τ = φs, where
the subscript s denotes differentiation with respect to the
filament arc length. The phase is measured in a coordinate
system defined by the tangent, normal, and bi-normal
vectors of the filament so that the curvature and torsion of
the filament do not contribute an effective twist. We can
then think of the system as a continuous one-dimensional
chain of coupled oscillators where the form of the coupling
will determine how the phase gradients evolve.
Measurements of the filament’s rotation angle, φ, are

made at 40 points around the scroll ring. For each
point a two-dimensional slice is taken normal to the
filament and the spiral core is located. One of the slices
is taken as a reference slice with φ= 0. Each of the
remaining slices is rotated by an angle that results in
the best correlation with the reference slice. This angle
of maximum correlation is taken to be the phase, φ, of
the spiral at that slice. This procedure is repeated for
13 equally spaced reference slices and the results are
averaged.

Burgers’ equation for filament twist. – Keener and
Tyson derived from the FitzHugh-Nagumo equations a
form of eq. (1) for the twist, τ = φs, assuming small values
of τ [10],

τt = c(τ
2)s+Dτss. (2)

Barkley and Margerit derived directly an equation for the
phase, φ,

φt = ω0+ c(φs)
2+Dφss (3)

and demonstrated that it is an expansion in orders of the
twist [11]. Equations (2) and (3) are equivalent as can be
seen by integrating eq. (2) once with respect to s. Since
we directly measure φ and are generally concerned with
the coupling of the phase of the oscillators, we focus on
eq. (3).
Each of the terms in eq. (3) can be interpreted physi-

cally. The first term indicates that in the absence of twist,
the scroll wave rotates with frequency ω0. The last term,
Dφss, indicates a diffusive coupling of the phase along the
filament, which attracts the phase at each point to the
mean local phase. The second term is the most intrigu-
ing as it induces an asymmetry in the phase coupling, but
does not contribute to the change in the average twist.
Since (φs)

2 is always positive, the typical case where c > 0
implies that the phase at each point is attracted to its
leading neighbors. This feature results in a phase profile
with a flat plateau-like region of leading phase and a kink
of lagging phase. In the case c < 0 the behavior is identical
but the role of leading and lagging phases is reversed.
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Fig. 2: Three-dimensional representation of an untwisting
filament. The initial filament (t= 0) has a total phase difference
of just over 180◦. As the total phase difference decreases, we
observe an asymmetric evolution of the phase with a kink
developing at the lagging phase (right-hand side) and a flat
plateau at the leading phase (left side).

Results. – The twisted scroll rings described earlier
can be represented as a ribbon where one edge of the
ribbon is the filament backbone and the other edge is at
the end of a vector pointing in the direction of the rotation
phase. The ribbon representation of the experimental
initial condition is shown in the top panel (t= 0) of fig. 2.
In this figure, smooth curves are drawn through the data
points in the following way: first the scroll ring filament is
drawn as a circle; then the phase at 40 points around the
circle is measured as described in the previous section and
approximated by a smooth curve with a single maximum
and single minimum. Note that this feature is consistent
with the initiation technique that creates a leading phase
at one end of the ring and a lagging phase at the other.
As the scroll ring rotates we observe a decrease in the

overall twist. However, a kink persists on the right-hand
side of the ribbon and a flat plateu-like region develops
on the left. This is shown in the bottom two plots of
fig. 2 at t= 180 s and t= 300 s. The phase of the kink
lags behind the phase of the plateau region on the left.
This phase relation is consistent with our interpretation of
the nonlinear term in eq. (3) for c > 0. The shrinking and
translation of the ring as reported for untwisted rings [8]
are not measurably affected by the twist and the ring fully
collapses in roughly 500 seconds.
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Fig. 3: Rotation phase along a shrinking filament measured
at times 0, 180, 300, 360 s (•, ∗, ×, +, respectively). The solid
curve is a fit to the data at t= 0. The dashed, dotted, and dash-
dotted lines are from a simulation of eq. (4) using the curve at
0 s as the initial condition. The parameters of the simulation
are c= 2.66× 10−4 cm2/s and D= 1.89× 10−4 cm2/s.

To test the applicability of eq. (3) as a quantitative
model for our observations, we perform numerical simu-
lations. First, we reformulate eq. (3) for the specific case
of a scroll ring. We carry out the substitution for the arc
length, s=Rθ, where R is the ring radius and θ is the
azimuth. The differential arc length is then ∂s=R∂θ and
eq. (3) becomes

φt =
c

R2
(φθ)

2+
D

R2
φθθ. (4)

Due to the curvature of the filament, its radius decreases
according to R(t) =

√
R(0)2− 2αt, where α is the filament

tension [8]. This square-root rate law was first measured
for untwisted filaments and was confirmed in experiments
with twisted filaments by demonstrating a linear relation
between R2 and t with slope 2α. For the purposes of
the simulation, α is measured independently for each
experiment we fit to. For the experiment presented, we
obtain α= 7.6× 10−5 cm2/s.
We take the data at t= 0 as the initial condition

for a numerical integration of eq. (4). A typical result
of the simulations is shown in fig. 3. We find that for
c= 2.66× 10−4 cm2/s and D= 1.89× 10−4 cm2/s, eq. (4)
describes both the rate of untwisting and the kink and
plateau features observed in our data at the lagging and
leading phases, respectively.
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Fig. 4: Temporal evolution of the plateau width. Points are
plotted from the experiment and solid lines are the results of
simulations. The simulation parameters are as in fig. 3 (top
curve), c= 0 (flat line), and c equal in magnitude but with
opposite sign of the top curve (bottom curve).

To further evaluate the plateau phenomenon, we plot in
fig. 4 the width of the plateau at half-maximum. The width
is calculated in radians so that we do not see narrowing due
to the collapsing of the ring. In the initial condition, the
peak and the valley are nearly symmetric and the width
of the peak is just below π. As the filament untwists, the
plateau becomes wider. Along with the measured data,
we plot the plateau width from the simulation of eq. (4).
The effect of the nonlinear term is demonstrated by also
plotting the peak width from the simulation when the
coefficient of the nonlinear term is set to zero and when
the sign is reversed. There is no plateau effect when the
nonlinearity is removed, and the plateau occurs at the
phase minimum instead of the maximum when the sign
is reversed.

Conclusions. – We have presented quantitative
evidence in a chemical experiment in favor of Burgers’
equation, eq. (2), as the mathematical description for
twist dynamics. In addition to the expected reduction
of average twist by diffusion of phase, we observe the
formation of a plateau-like interval of leading phase. This
is the result of the nonlinear term in Burgers’ equation
for c > 0. We note that Burgers’ equation also supports
shock solutions for certain regimes of the parameters c
and D, but we have not observed this phenomenon in our
experiments.

We find no measurable effect of the filament twist on
the collapse or translation of scroll rings reported for
untwisted filaments [8]. However, we do believe that a
more complex filament geometry, for example one with
positive and negative curvature, will lead to structures
where the coupling between twist and filament motion is
more important.
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