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We describe a simple, discrete model of deterministic chiral motion on a square lattice. The
model is based on rotating walkers with trailing tails spanning L lattice bonds. These tail
segments cannot overlap and their leading A segments cannot be crossed. As prescribed by their
chirality, walkers must turn if possible, or go straight, or else correct earlier steps recursively.
The resulting motion traces unbound trajectories and complex periodic orbits with various
symmetries. Periods tend to decrease with increasing L and vary between L and L2. Interacting
walkers can form intricate pair states. Some orbits match pinned spiral tip trajectories observed
experimentally in excitable systems.
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1. Introduction

Throughout science and mathematics, chirality is
an important property. It implies that a geometri-
cal object, particle or structure cannot be mapped
to its mirror image by rotations and translations
alone. Examples include certain knots, enantiomers
such as chiral drugs, vortex patterns, elementary
particles, and human hands [Saito et al., 2006; Kon-
depudi et al., 1990]. Symmetry breaking in these
diverse systems has attracted considerable scien-
tific interest revealing profound insights into our
universe. However, the question as to how chiral
building blocks and/or chiral dynamics affect the
symmetries of derived phenomena is by compar-
ison understudied. Nonetheless, there are numer-
ous interesting examples of inherited chirality such
as the macroscopic shapes of bacterial colonies
that reflect the microscopic chiralilty of flagella
[Ben-Jacob et al., 1995]. Similarly there are close
links between molecular chirality and pattern for-
mation in liquid crystals, Langmuir monolayers,
smectic films [Selinger et al., 1993; de Gennes,

1974] and molecular chiral superstructures [Staneic
et al., 2006; Pokroy et al., 2009]. In this article, we
describe and investigate a very simple model of chi-
ral dynamics. The model is closely related to the
rotation of spiral waves in excitable systems such
as the Belousov–Zhabotinsky (BZ) reaction. These
vortices are known to pin to impenetrable and unex-
citable obstacles [Steinbock & Müller, 1992]. In
obstacle arrays that confine the excitable medium
to a square network, the central spiral tip rotates
along intricate trajectories that encompass numer-
ous obstacle units [Ginn & Steinbock, 2004, 2005].
A typical example is shown in Fig. 1. Here the
excitation spiral (white regions) is strongly frag-
mented due to the externally imposed geometry and
also deformed as the overall wave propagation is
unobstructed only along the straight horizontal and
vertical channels. More importantly, the spiral tip
rotates steadily around a linear chain of three next-
neighbor obstacles (marked with “x” in figure).

In general, these periodic orbits depend criti-
cally on the ratio between the obstacle perimeter Λ
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Fig. 1. (a)–(e) Five consecutive snapshots of a spiral wave in a BZ reaction medium confined to a Manhattan-like network. The
excitable tracks appear as a dark grid. The enclosed squares are nonreactive elastomer obstacles produced by soft-lithography.
The spiral tip rotates around 1 × 3 obstacle units (marked by black crosses). The time elapsed between subsequent frames is
75 s. Frame (f) shows the resulting tip trajectory. See reference [Ginn & Steinbock, 2004] for additional details.

and the length of the refractory zone λ on the
back of the excitation pulse [Tamarit et al., 1996].
If λ < Λ then the tip rotates around a sin-
gle obstacle unit. Otherwise, rotation must occur
around a minimum of two next-neighbor obsta-
cles because the spiral encounters its own refrac-
tory tail. In this process, the tip periodically enters
connecting channels but fails to exit, vanishes and
the next closest wave segment becomes the pri-
mary pacemaker. Notice that many other complex
orbits have been observed in chemical experiments
and reaction–diffusion models including trajectories
generated by repeating sequences such as TTTS
(2×2 obstacle box) and TSTST (cross of five obsta-
cles), where “T” and “S” indicate turns and straight
moves, respectively. Lastly, we emphasize that
these “semi-discrete” excitable media have been
attracting considerable interest in recent years. In
addition to the elastomer-based microreactor in
Fig. 1, such experiments involve, for instance, cat-
alyst patterns printed onto specialized membranes

[Steinbock et al., 1995] as well as microfluidic assem-
blies of immiscible fluids [Toiya et al., 2008].

2. The Model

Our model aims to capture the fundamental aspects
of pinned spiral tips or similar chiral motion in the
form of a deterministic walker on a square lattice.
The walker moves forward at a speed of one lattice
bond per iteration and turns clockwise whenever
possible. In addition, the walker has a continuous
tail which represents the refractory zone or a sim-
ilar object. The tail has a constant length of L
lattice bonds (in the following called segments).
An overlapping of tail segments is forbidden, i.e.
each lattice bond can be occupied by only one
tail segment at a time. In addition, the leading
A (0 ≤ A ≤ L) segments of the tail show “abso-
lute refractoriness” and their endpoints cannot be
crossed by the walker. The working rules to advance
the walker from iteration t to t + 1 are: (1) walker
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Fig. 2. Stepwise dynamics of a tailed chiral walker. The leading A = 4 tail segments involve five lattice nodes that cannot
be crossed (red lines and solid symbols). The R = 4 rear segments (blue lines) cannot overlap with other segments but their
four nodes (blue open circles) can be crossed. The dashed line is the periodic orbit of the walker. An animation (movie 2) is
also provided.

turns clockwise if possible; (2) or else the walker
goes straight if possible; (3) otherwise the system
is reset recursively to iteration t − τ (starting at
τ = 1). If the walker had turned in that iteration,
this turn is replaced by a straight step and iterations
continue from the corrected iteration time (t − τ)
(see movie 1). We emphasize that these walkers
never turn counter-clockwise and, thus, have a con-
served chirality of X = +1. The motion of counter-
clockwise rotating walkers (X = −1) is analogous
to their mirror-image counterparts. Notice that the
employed recursive correction is similar to the van-
ishing of a spiral tip segment and the promotion of
another to primary pacemaker.

Figure 2 shows a sequence of eight consecutive
iterations for a tailed chiral walker with L = 8 and
A = 4. The arrow indicates the head of the walker.
The solid (red) and open (blue) circles along with
their connecting lines (same colours) represent the
absolute refractory tail and the trailing R = L − A
segments, respectively. If the walker starts from a
fully elongated initial condition, it requires only
nine iterations to reach a periodic state. The tra-
jectory of this state is shown as dashed lines in
Fig. 2. Using two-dimensional point group nomen-
clature [Mezey, 1991], it is a chiral pattern with C4

symmetry and its period is 24. The specific steps
in Fig. 2 are: turn from (a) to (b) and (b) to (c),
straight from (c) to (d) because the target node

for the turn shows absolute refractoriness, straight
from (d) to (e) because the target bond for the turn
is occupied, turn from (e) to (f), straight from (f)
to (g) because the turn would jam the walker in
the next iteration, and turn from (g) to (h). Notice
that patterns (a) and (g), which are separated by
six steps, can be matched by a 90◦ rotation. This
feature accounts for the observed period and four-
fold symmetry of the orbit.

3. Results and Discussions

A survey for all L ≤ 100 and A ≤ 50 revealed that
every walker in this range of parameter values con-
verges to a periodic state if started from a fully
straight initial condition. The phase diagram in
Fig. 3 shows the corresponding orbits for a smaller
range of A and R values. No orbit is unique to a par-
ticular point in the phase diagram as the pattern for
(A,R) is always identical to the one for (A+1, R−1)
or an even larger, connected region in the phase dia-
gram. Accordingly, we partition Fig. 3 into equal-
orbit domains using thin horizontal and vertical
lines. The characteristic orbits are superimposed
and small patterns are magnified for clarity. Some
trajectories are unbound states for which the walker
moves in diagonal directions or along the lattice
lines (see movie 3). The corresponding patterns are
labeled with small markers and are plotted in red.
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Fig. 3. Phase diagram of chiral walker motion segmented into regions of identical trajectories. The parameters R and A
denote the length of the relative and the absolute refractory tail, respectively. Unbound states are plotted in red and are
labeled with a plus sign (drift along lattice lines), an asterisk (drift in 45◦ direction), or a circle (30◦ direction).

We emphasize that in these cases the walker is still
periodic. For example, all walkers with A < 3 and
R > 6 move by repeating the sequence STSTTT.
Also notice that the two-dimensional symmetries of
the orbits in Fig. 3 include C2, C4, D2 and D4.
An instance of C1 symmetry is found to exist for
(A,R) = (7, 36). Examples for each of these cases

(a) (b) (c)

(d) (e)

Fig. 4. Orbits having (a) C1, (b) C2, (c) C4, (d) D2 and (e)
D4 symmetries. The corresponding parameter values (A,R)
are (7, 36), (3, 14), (22, 98), (10, 50), (5, 19), respectively.

are shown in Fig. 4. Another characteristic feature
of the phase diagram is that, with the exception
of A = 0, 1, 2, all domains have a height of two A
units, or more precisely, consist of an odd and a by
one larger, even A value. In addition, non-horizontal
domain boundaries always follow constant L values
and are, hence, step-shaped.

An important question concerns the depen-
dence of the periodic orbits on the initial condition
of the walker. For L < 15, we tested all initial shapes
that (i) do not reuse lattice bonds and (ii) do not
cause immediate jamming. Notice that the number
of paths selected by (i) scales exponentially with L
[Guttmann, 1985]. Disregarding differences in abso-
lute position and orientation, we find no depen-
dence on the initial condition. Only the patterns
for R ≤ 2 (cf. Fig. 3) vary between rectangles
of different width but equal perimeter and period.
We emphasize that we did not find any walkers
without periodic (or drifting) solution. Clearly, we
currently cannot rule out more complicated behav-
ior for very long walkers. Hence, notice that all
subsequent results are obtained for initially linear
walkers.

Surprisingly, the period T of chiral walkers
tends to decrease with increasing tail lengths L
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Fig. 5. (a) Period of nondrifting walkers as a function of
the tail length L. Plot symbols correspond to different values
of A as specified in the legend. The black curves are the
parabolas p = 1–5 specified in Eq. (1). The continuous blue
line is lower bound T = L. (b) Period as a function of A
and L. (c)–(e) Periodic orbits for A = 23 as found for the
intersections with parabolas p = 1–3 in (a). (f) Periodic orbit
for (A,L) = (17, 75) which corresponds to the largest spike
in (b).

but increases with increasing A. Here, we define
the period as the smallest number of iterations
required for reestablishing the absolute positions of
all tail segments. Data from drifting walkers are,
hence, not included. Figure 5(a) shows T (L) for
all A values less than 43. The different A values
are distinguished by plot symbol and color. For
large A, the dependence can be described as a
sequence of decreasing plateaus separated by pairs
of intermediate periods. The data in Fig. 5(a) sug-
gests that the plateau-connecting pairs describe

parabolas of the form

Tp(L) =
1
p2

[L − (2p − 2)][L − (2p − 2)(2p + 1)],

(1)

where p ∈ N
∗ indexes the parabolas in the direction

of increasing L. The first five parabolas (p ≤ 5) are
shown in Fig. 5(a). Notice that T1(L) = L2 is the
maximum period for walkers with tail length L. The
corresponding orbits are simple diamonds of height
(Aeven + 2)/2 or (Aodd + 3)/2 [e.g. Fig. 5(c)]. In
addition, walkers must have periods greater or equal
to L because no orbit can consist of fewer than L
bonds. In Fig. 5(a), this lower bound is plotted as a
solid blue line. The parabolas in combination with
the T = L curve seem to be important for determin-
ing L-dependent changes in the period of the walk-
ers. More specifically, we find that these changes
tend to occur when a plateau intersects with any of
these curves.

Most of the aforementioned plateaus have a
unique period. However, there are some exceptions
such as for A = 13 where the second highest
level varies by two time steps. Moreover, there are
two interesting degeneracies. First, two neighboring
points in a plateau can have the same period but
differently shaped orbits. Second, identical orbits
can have slightly different periods. Simple exam-
ples of these two cases are (A,R) = (5, 12), (5, 13)
and (A,R) = (5, 4), (5, 5), respectively. We empha-
size that for the parameter range investigated these
scenarios are exceptions.

At intermediate A values, we find a similar
plateau structure but some isolated data points and
pairs fail to obey this simple pattern. For unknown
reasons, these exceptions are quite pronounced for
A = 17. As illustrated in Fig. 5(b), the situation
is overall more complex for small A values. Notice
that T = 0 indicates drifting walkers (and the ill-
defined parameter region A > L). Consequently,
Fig. 5(b) suggests that drift occurs for small A val-
ues while the plateau theme governs periods for
large A. For intermediate values, we find a complex
dependence of the period on the system parameters.
Some parameter pairs have periods that are sur-
prisingly larger than the periods in their immediate
neighborhood. The corresponding orbits, however,
show no unusual features [Fig. 5(f)].

In the following, we consider the case of inter-
acting chiral walkers. All rules for single walkers
are upheld and generalized in the obvious sense
that walkers must neither overlap with any other
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Fig. 6. Orbits of walker pairs with L1,2 = 8 and A1,2 = 4.
Chiralities in (a)–(e) are X1,2 = +1 and (X1, X2) = (+1,−1)
in (f), (g). The pairs in (e), (g) are unbound and move in
directions indicated by the arrows. All walkers were initially
straight and parallel, but their relative distance d and their
offset in tail direction h varied: (d, h) = (3, 0) in (a), (1, 0) in
(b, g), (2, 0) in (c, f), (3, 1) in (d), and (2, 2) in (e). Also see
movie 4.

walkers’ tail nor cross nodes that are absolute
refractory. In addition, we require one new rule to
resolve the behavior in head-on collisions. To avoid
such a situation, we change both involved walk-
ers from “T” to “S” or else correct by recursion.
Moreover, we allow the walkers to have different
chirality X.

In contrast to solitary walkers, pair dynam-
ics strongly depend on the specific initial condi-
tions. Overall the dynamics can be grouped into
three different categories: (1) The walkers are suffi-
ciently far apart and move along their characteris-
tic, single-walker orbits. (2) The latter orbits touch
or even overlap, but there is no interaction due
to temporal separation. This situation is mainly
relevant for walkers with equal period. (3) Pair-
specific orbits which differ qualitatively from the
single-walker orbits form and are either localized or
unbound.

Figure 6 shows seven examples for a walker pair
with (L,A) = (8, 4). Both walkers move clockwise
in (a)–(e) while they rotate in opposite directions
in (f) and (g). The differences between the trajec-
tories (a)–(e) and (f), (g) result only from small dif-
ferences in the initial condition (see caption). Many
of the trajectories observed for periodic pair motion
[e.g. Fig. 6(c)] are not found for any solitary walker.
They include chiral as well as achiral patterns [e.g.
Figs. 6(b) and 6(f)]. Moreover, we find a range of
periods associated with the different pair solutions.

For the states in Fig. 6, these periods are 24 in (a),
(b), and (f), 28 in (c), and 120 in (d).

The dependence of multiwalker systems on
their initial conditions greatly increases the com-
plexity of our model, thus, making it highly chal-
lenging for computational analyses. Qualitatively,
however, our results suggest that interacting walk-
ers of opposite chirality often form drifting pair
states if they do not decouple early on. The sim-
plest example for a translational motion involves
two heads that are aligned and, hence, always move
straight to avoid a head-on collision. However, we
also find highly intricate drift patterns in which the
individual walkers perform complex, individual step
sequences. Clearly more work is needed to describe
multiwalker dynamics including collisions involving
drifting walkers, some of which might be reminis-
cent of the complex behavior in cellular automata
such as Conway’s “Life”.

4. Conclusions

In conclusion, we have proposed a set of simple
rules governing the deterministic motion of tailed
chiral walkers on a square lattice. The leading part
of the tail is fully self-avoiding while the trailing
part is weakly self-avoiding [Domb, 1983; Kennedy,
1994]. This combination of lattice bond and lattice
node rules is important for the model’s complex-
ity as only very simple orbits are found for A = 0
or R = 0. Furthermore, the tail shares similari-
ties with the refractory zone of rotating excitation
waves. Accordingly, we find that some chiral walk-
ers describe periodic orbits that are also observed
in experiments and simulations with pinned spiral
waves in the Belousov–Zhabotinsky reaction.
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