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Scroll waves are three-dimensional excitation patterns that rotate around one-dimensional space
curves. Typically these filaments are closed loops or end at the system boundary. However, in
excitable media with anomalous dispersion, filaments can be pinned to the wake of traveling wave
pulses. This pinning is studied in experiments with the 1,4-cyclohexanedione Belousov–
Zhabotinsky reaction and a three-variable reaction-diffusion model. We show that wave-pinned
filaments are related to the coexistence of rotating and translating wave defects in two dimensions.
Filament pinning causes a continuous expansion of the total filament length. It can be ended by
annihilating the pinning pulse in a frontal wave collision. Following such an annihilation, the
filament connects itself to the system boundary. Its postannihilation shape that is initially the
exposed rim of the scroll wave unwinds continuously over numerous rotation periods. © 2008
American Institute of Physics. �DOI: 10.1063/1.2835602�

I. INTRODUCTION

Rotating spiral waves are a common phenomenon in a
broad spectrum of experimental systems. Examples from
physics and chemistry include Rayleigh–Bénard convection,1

dielectric barrier discharge in gases,2 corroding metal sur-
faces under thin electrolyte layers,3 catalytic surface reac-
tions such as CO oxidation on Pt,4 and the homogeneously
catalyzed Belousov–Zhabotinsky �BZ� reaction.5 In particu-
lar, spiral waves in the latter two examples share profound
similarities with rotors in certain biological systems. Classic
examples are spiral waves in aggregating populations of the
cellular slime mold Dictyostelium discoideum,6 the interior
of fertilized egg cells,7 the retina of chicken,8 cardiac tissue,
and the human heart where rotating waves of action potential
are believed to cause ventricular arrhythmia and fibrillation.9

Most of the latter systems behave as excitable media. In
the simplest case, they have a single, stable steady state.
However, perturbations exceeding a characteristic threshold
cause the system to perform a long excursion through phase
space prior to returning to the rest state. During the latter
phase of this cycle, the excitation threshold is raised and the
system is refractory. In spatially extended media with appro-
priate short-range coupling such as diffusion, the excitation
cycle spreads through space at a constant speed.10 This
propagation is driven by steep gradients at the wave front,
which induce fluxes and perturb areas ahead of the front. The
resulting wave pulse spatially unfolds the excitation cycle
and causes a refractory zone in the wave back. Consequently,
colliding excitation waves show no interference phenomena
but annihilate in response to frontal wave-to-wave and wave-
to-obstacle collisions.11

The refractory zone and its specific relaxation dynamics
are of critical importance to the structure and dynamics of
wave trains. For example, they create a wavelength �min be-

low which no wave trains can exist. Moreover, in many ex-
perimental systems, the wave speed increases with increasing
wavelengths and saturates at a finite, maximal value that
equals the velocity of a solitary pulse propagating into a fully
recovered medium.12,13 This simple dependence of wave ve-
locity c on wavelength � is often referred to as normal dis-
persion. However, numerous theoretical as well as experi-
mental studies have documented interesting “anomalies” of
c���, such as damped oscillations, band gaps, finite band-
widths, and bistability.14–17

One of these so-called anomalous dispersion relations
gives rise to a phenomenon known as “wave merging.”18,19

In this case, the dispersion relation has a single maximum
and the speed c��min� is larger than the velocity of the soli-
tary pulse, which implies that the frontier pulse is the slowest
pulse in every finite wave train.19,20 Consequently, all trailing
pulses approach the wake of the frontier pulse where they
disappear. Nonetheless, wave trains and patterns can obvi-
ously expand in size and overall number of pulses.

We investigate the dynamics of rotating spiral waves in
excitable reaction-diffusion media with the latter type of
anomalous dispersion.21 In two-dimensional systems, these
patterns are organized by spiral tips that orbit along trajecto-
ries such as circles, epicycles, and hypocycles. If the diam-
eter of the tip orbit is small compared to the wavelength of
the spiral wave, the trajectory can be represented by its cen-
tral point. This point is a phase singularity as the pattern’s
local oscillation phase varies continuously from −� to �
around closed paths surrounding it.

In three-dimensional systems similar relations hold but
here spirals rotate around one-dimensional space curves
rather than points. These curves are commonly referred to as
“filaments.” In general, they are not stationary but evolve
according to factors such as local curvature and twist, with
the latter denoting gradients in rotation phase.22–26 For many
years, it was believed that filaments must either end at the
system boundary or close in on themselves. If closed, theya�Electronic mail: steinbck@chem.fsu.edu.
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can form rings, knots, or chain links.27–29 Recent experi-
ments by our group, however, showed that filaments can also
terminate in the wake of a traveling wave pulse if the system
obeys dispersion relations giving rise to “wave merging.”30

In this article, we present additional results regarding this
unexpected phenomenon and, in particular, reproduce fila-
ment pinning by numerical simulations of a three-species
reaction-diffusion model.

II. EXPERIMENTAL

We use a modified version of the BZ reaction as our
experimental model system. In this reaction, the classic or-
ganic substrate and the catalyst are replaced by 1,4-
cyclohexanedione �CHD� and �Fe�batho�SO3�2�3�4−, respec-
tively. The first substitution excludes undesired bubble
formation, while the latter one yields a conveniently large
difference between the molar absorption coefficients of the
reduced and the oxidized state.31 More importantly, however,
the former substitution gives rise to various types of anoma-
lous dispersion relations, which have been described and
analyzed in earlier studies.19,20 Reaction mixtures are pre-
pared from stock solutions of NaBrO3 �Fluka�, CHD �Ald-
rich�, sulfuric acid �Riedel-de Haën, 5 M�, catalyst, nanopure
water, and polyacrylamide solution. The latter compound in-
creases the viscosity of the BZ solution from about
1 to 150 mPa s suppressing convective fluid motion. The
preparation of the catalyst and the polyacrylamide solution is
detailed in �Ref. 30�.

For pseudo-two-dimensional experiments, the initial
concentrations are �NaBrO3�=0.20 mol / l, �CHD�=0.20
mol / l, �H2SO4�=0.60 mol / l, and ��Fe�batho�SO3�2�3�4−�
=0.50 mmol / l. The latter experiments are carried out in thin
layers of the reaction solution confined between two circular
plexiglass plates. The height of the solution layer is 0.3 mm.
All measurements are carried out at a temperature of
21�1 °C.

For three-dimensional systems, the initial concentra-
tions are �NaBrO3�=0.18 mol / l, �CHD�=0.19 mol / l,
�H2SO4�=0.60 mol / l, and ��Fe�batho�SO3�2�3�4−�=0.475
mmol / l. After preparing 18 ml of reactant mixture we trans-
fer it to a cylindrical glass cuvette �inner diameter of
3.7 cm�. A rod-shaped, magnetic stir bar is fitted to the bot-
tom of this container to remove undesired wave patterns by
remixing, which effectively resets the system to a favorable
spatially homogeneous state. Two silver wires are utilized to
initiate oxidation waves. One wire is attached to a mi-
crostage and can be lowered to touch the uncovered BZ so-
lution, while the second one is attached to the top of the
magnetic stir bar about 1 mm away from the stir bar’s center.
Accordingly, the rotation of the stir bar by a few degrees will
move the silver wire by a small distance. This feature is
essential for initiating the asymmetric spiral patterns to be
studied here.

We use optical tomography32–34 to obtain spatially re-
solved information on the local absorption within the three-
dimensional reaction medium. This technique requires that
the reaction cuvette is rotated steadily around its symmetry,

or z, axis �typical rotation rate: 12.3 rpm�, while transmission
images are being acquired at a rate of 12.5 frames /s.

To reconstruct the three-dimensional wave pattern, the
image data are broken into individual slices, or sinograms,
along the vertical rotation axis of the sample. On each sino-
gram, backprojection32 is performed to obtain the corre-
sponding concentration field in real space coordinates per-
pendicular to the z axis. To reduce high wave number
artifacts, the sinogram data are processed in the wave num-
ber domain using the Ram-Lak filter multiplied by a Hann
window.

III. EXPERIMENTAL RESULTS

Pseudo-two-dimensional CHD-BZ media with anoma-
lous dispersion show large-scale target patterns and rotating
spiral waves that seem to be qualitatively indistinguishable
from those in excitable systems with normal dispersion.
However, striking differences exist along the borders of
wave patterns expanding into wave-free surroundings. For
the specific reagent concentrations studied here, we observe
wave merging which means that all trailing pulses eventually
disappear in the wake of the outermost frontier pulse. As
mentioned in the Introduction, this annihilation zone moves
away from the pattern’s pacemaker as it is tied to the back of
the outermost pulse and eventually vanishes at the system
boundary. Prior to this disappearance, remarkable and inter-
esting dynamics can be observed that sometimes also affect
later stages by nucleating specific patterns.

A striking example for these phenomena is illustrated in
Fig. 1 which shows the propagation of a nonrotating wave
defect in a pseudo-two-dimensional CHD-BZ system. The
sequence consists of four still frames. The white bands cor-
respond to the excitation waves. Within these brighter re-
gions, the reaction’s redox catalyst is predominantly oxi-
dized, while the darker background indicates a chemically
more reduced state which is close to the system’s stable rest
state. In the upper halves of the images, a nearly planar wave
pulse propagates in upward direction at a speed of
c0=20 �m /s. Below this planar front, two other wave pulses
propagate rightward. The latter waves end in the wake of the
planar pulse. Closer inspection of the data in Fig. 1 reveals a
narrow, dark gap at the T-shaped junctions between the upper
and lower waves.

The lower portion of the leading, rightward traveling
wave has a nearly linear shape. This segment is oriented at
an angle of about 50° with respect to the planar front. This
approximate value is reached asymptotically as it is apparent

FIG. 1. Sequence of absorption images showing the motion of a nonrotating
wave defect in a pseudo-two-dimensional reaction-diffusion system. The
defect is pinned to the back of an upward moving, nearly planar wave.
Initial reactant concentrations are listed in Sec. II. Time between frames:
10 s. Field of view: 4.3�5.0 mm2.
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from the deviations in the early frames in Fig. 1. Further-
more, the wave’s leading “head” is clearly convex with its
rightmost point being 0.8 mm below the planar front. This
head propagates with a velocity of cx=77 �m /s in horizontal
direction and, hence, follows a linear trajectory tilted at an
angle of arctan�c0 /cx�=15° away from the horizontal. The
third pulse trails in the wake of both the planar and the lead-
ing rightward moving wave �Figs. 1�b�–1�d��. In Fig. 1�d� it
has not yet reached a stationary shape.

The characteristic geometry of the rightward moving
pulses is caused by two main factors: The system’s anoma-
lous dispersion and the conventional velocity-curvature de-
pendence of excitation waves. The latter is described by the
eikonal equation N=c0−DK,35 where N is the normal front
velocity, c0 is the speed of a planar front, and K denotes the
fronts local curvature �K�0 for convex fronts�. The param-
eter D is approximately the diffusion coefficient Du of the
system’s autocatalytic species �here HBrO2�. Accordingly,
the convex profile of the head leads to a velocity reduction
that partially compensates the higher velocity generated by
the head’s proximity to the planar, upward moving wave. We
note that a similar situation has been studied for the photo-
sensitive BZ reaction where a solitary wave was deformed
by a stripe of increased c0.36

Although the analysis of the specific front shape is inter-
esting, it is not further pursued here. In this article, we focus
on the pinning of excitation pulses to anchoring planar
waves. This pinning creates wave ends that carry out trans-
lational rather than rotational motion, which is remarkable
because spiral waves can readily form in the very same sys-
tem. The specific fate of a wave end or wave break appears
to be determined by its distance to other wave structures: If
the defect is sufficiently far away from other waves, it will
curl up to become a rotating spiral; if, however, the defect is
initially within the wake of another wave, it is pinned and
translates along the back side of its anchoring wave. Notice
that this motion can be stopped by collisions with another
defect moving in opposite direction. Moreover, wave pinning
can also occur in the wake of an expanding, circular anchor
wave, which should create defect motion along logarithmic
spiral trajectories. We suggest that the critical distance be-
tween defect and potential anchor strongly depends on the
system’s dispersion relation and also on the angle between
the waves.

Wave-pinned defects also exist in three-dimensional ex-
citable media. Figure 2 shows a pair of still frames illustrat-
ing two different, but nearly simultaneous views through a
3.7 cm thick CHD-BZ system. The viewing angles in frames
�a� and �b� differ by 90° with the latter showing a clockwise
rotating spiral that ends in the wake of a cusp-shape wave.
More importantly, we find that the filament of this three-
dimensional spiral wave also terminates at the same wave
pattern. However, the positions of the filament’s terminal
points and the overall shape of scroll wave are not easily
discerned from the images in Fig. 2.

We, therefore, compute tomographic reconstructions
based on the procedures described in the Experimental sec-
tion. Two typical examples are shown in Fig. 3 where frames
�a� and �b� are obtained from the same wave pattern at two

different times. In both frames, the entire structure is cut and
only the posterior halves are shown. The omitted anterior
half is essentially the mirror image of the depicted pattern.
The reconstructions reveal that the scroll wave is confined to
an hourglass-shaped wave envelope. Furthermore, the outer
parts of the scroll wave are connected to the back of this
expanding envelope where they undergo dynamics similar to
the two-dimensional case shown in Fig. 1. The filament, or
rotation backbone, follows the rim of the spiral and also ends
in the wake of the envelope wave. Its shape appears to be
nearly linear in �a� but bends and wiggles slightly in the
course of spiral rotation. Moreover, the filament increases in
length as its anchoring wave expands outwards. Additional
details of these features have been reported in Ref. 30.

IV. MODEL

Earlier studies show that many of the wave phenomena
in the CHD-BZ reaction are captured qualitatively by a
simple three-variable reaction-diffusion model.37,38 These

FIG. 2. Two absorption images of an unusual, three-dimensional wave pat-
tern as viewed from two perpendicular directions. The time elapsed between
the snapshots is negligible. Initial reactant concentrations are listed in Sec.
II. Field of view: 25.9�7.6 mm2.

FIG. 3. Tomographic reconstruction of a wave-pinned scroll wave �different
from the one shown in Fig. 2�. Initial reactant concentrations can be found in
Sec. II. Time elapsed between frames: 45 s.
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phenomena include wave merging, in general, and more spe-
cific features such as the nucleation of spiral pairs in three-
wave collisions. The model involves one activator species
�u� and two inhibitors �v and w�, all of which are functions
of the dimensionless time t and the space coordinates x, y,
and z,

�u

�t
= �2u +

1

�
�u�1 − u��u −

v + w

a
�� , �1�

�v
�t

= u − v , �2�

�w

�t
= ��	 − w� − 
uw . �3�

The parameters �, a, �, 
, and 	 are dimensionless con-
stants. For 	=0, Eqs. �1�–�3� are a specific case of the Bar-
kley model.39 Moreover, Eqs. �1�–�3� are similar but not
identical to the Krug model of the photosensitive BZ
reaction,40 which itself is based on the classic Oregonator
model.41 These similarities suggest a qualitative interpreta-
tion of u, v, and w as the concentrations of the chemical
species HBrO2, oxidized catalyst and Br−, respectively.

The numerical simulations discussed in the following are
carried out for a fixed set of parameter values that defines an
excitable system with merging wave pulses and stable spiral
waves. The specific model parameters are �=0.01, a=0.8,
�=0.2, 	=0.51, and 
=10.0. The model equations are
solved numerically using Euler integration at a grid spacing
of 0.2 and a time step of 0.005. Most two- and three-
dimensional simulations are carried out on a lattice of 200
�200 and 200�200�200 grid points, respectively, con-
strained by no-flux boundaries.

V. NUMERICAL RESULTS

For spatially one-dimensional systems, the profiles u�x�,
v�x�, w�x� of a typical, traveling pulse have been published
in Ref. 37. They show a propagating region of high u values
in which the inhibitor w decreases while the inhibitor v in-
creases. In its wake, these changes reverse and set up cross-
gradient inhibitor profiles that give rise to the aforemen-
tioned anomalies in the dispersion relation of wave trains.

In two-dimensional systems, these features can repro-
duce the experimentally observed coexistence of transla-
tional and rotational wave defects �cf. Fig. 1�. Figure 4�a�
shows a sequence of three snapshots illustrating the pinning
of a fast, rightward moving pulse in the wake of slow planar
wave. For this simulation, the latter front was initiated by
increasing the value of u along the entire, lower boundary.
Once the propagating wave had traveled into the system, the
second pulse was triggered along the left boundary up to the
position of the planar anchor. The resulting, rightward mov-
ing wave rapidly deforms and develops a linear tail and con-
vex head. Its overall shape and the linear trajectory of its
upper end are in good agreement with the experimental data
shown in Fig. 1.

Figure 4�b� shows the results of a simulation that differs
from the one in Fig. 4�a� only by the presence of a second

planar wave. This additional wave was initiated along the
upper system boundary and propagates downwards. The two
planar fronts collide and annihilate, which unpins the right-
ward moving pulse as shown in the second frame of the
sequence. Subsequently, the unpinned wave end stops its
translational motion and becomes a rotating, but otherwise
stationary, spiral tip. This mechanism of spiral wave nucle-
ation can obviously also occur if the anchoring and annihi-
lating wave pulses are nonplanar.

The two contour plots in Fig. 5 show additional details
regarding the similarities of and differences between transla-
tional �a� and rotational wave defects �b�. Each plot graph
curves of constant u �solid line, u=0.1� and constant v �dot-
ted and dashed lines, v=0.1 and 0.3, respectively�. For both
types of patterns, the wave ends show a characteristic cross-
ing of lines of constants u and v. This crossing is not ob-
served in other parts of the pattern. Furthermore, the inter-
section points of the high and low v contours with the u
curve are very close to each other in �b�, while the low-v
crossing is shifted to a position near the wave head in �a�. In
addition, we find that the v contours of wave-pinned pulses
are qualitatively different for low and high v values. More
specifically, low-v contours surround the pinned as well as
the pinning pulse, while high-v contours define two, noncon-
nected areas.

FIG. 4. Results obtained by numerical simulation of Eqs. �1�–�3� for a
two-dimensional system. �a� Image sequence of a wave front pinned to the
wake of a planar pulse. �b� Spiral formation in response to the annihilation
of the pinning wave. Dimensionless time elapsed between the frames is 5.0
in �a� and 7.5 and 48.7 in �b�. The area shown in the individual frames
measures 50�40.

FIG. 5. Results of numerical simulations illustrating two qualitatively dif-
ferent, dynamic defects. The defect in �a� translates at steady speed in the
wake of planar pulse. The defect in �b� rotates around a small circle and
organizes a rotating spiral wave. The contour plots show curves of constants
u and v where u=0.1 �solid�, v=0.1 �dotted�, and v=0.3 �dashed�.

094503-4 Bánsági, Jr., Meyer, and Steinbock J. Chem. Phys. 128, 094503 �2008�

Downloaded 07 Mar 2008 to 128.186.109.170. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



In the following, we explore whether Eqs. �1�–�3� can
also reproduce the pinning of scroll wave filaments that we
observe in our experiments with the CHD-BZ reaction �cf.
Figs. 2 and 3�. For this purpose, we carry out simulations in
a spatially three-dimensional domain in which the initial
conditions connect an untwisted scroll wave to a planar wave
pulse. The first frame in Fig. 6 illustrates this unusual starting
condition by visualizing the variable u�x ,y ,z�. For creating
this pattern, we first compute the scroll wave solution as well
as an upward moving, planar excitation pulse. These numeri-
cal solutions are then patched together with the scroll wave
in the lowest portion �0�z�5�, followed by a volume slice
�5�z�7� containing the planar pulse solution and some of
its tail. All points above the pulse front �z
7� are set to the
steady state of the spatially homogeneous system.

The six frames in Fig. 6 show the evolution of the pat-
tern initiated in the fashion described above. Superimposed
onto the individual plots are white lines that represents the
scroll wave filament. The projection of the latter space
curves onto the system’s lower boundary is shown below
each box. The filament coordinates are identified as the
points where the variables u and v are 0.5 and 0.2, respec-
tively. The nonrotating, pinned wave ends in the back of the
planar wave are not detected.

The data in Figs. 6�a� and 6�b� show that the initially
straight filament quickly bends into a corkscrew-shaped
curve. This early deformation is probably caused by the spe-
cific initial conditions of the simulation. More importantly,
the subsequent frames in Fig. 6 clearly show that the filament
remains pinned and expands upward at the speed of the pla-
nar wave. During this expansion process, the corkscrew-
shaped deformation gradually disappears, thus, creating an
essentially straight filament. Last, we observe that in Fig.
6�f� the planar wave has disappeared at the upper system
boundary. This event connects the scroll wave and its fila-
ment to the upper boundary, creating a conventional scroll
wave with a filament spanning the entire system in vertical
direction.

The numerical result in Fig. 6 captures the main features
of the experimental data in Fig. 2 as in both cases the scroll
wave edge and its filament are pinned to a traveling wave.
We also note that recently published experiments show that
the total filament length of a pattern similar to Fig. 2 grows
with twice the speed of its anchoring wave envelope.30 This
finding is in excellent agreement to our simulation where
only one end of the filament is wave pinned and filament
expansion occurs with half that speed.

To obtain information regarding the robustness of the
overall pinning process, we varied the initial conditions in
our simulations. Specifically, we increased the distance be-
tween the planar pulse and the scroll wave by filling in larger
segments of the planar pulse tail. Qualitatively these trials
revealed that the pinning process is sufficiently robust to be
observable in experiments. However, pinning fails if the dis-
tance is too large, which manifests itself by rotation of the
entire upper edge of the scroll wave. This rotational rather
than translational motion creates a spiral-shaped, horizontal
connection between the filament “stem” and the system’s
sidewalls. The overall shape of this unpinned filament and its
dynamics are similar to the data in Figs. 8�c�–8�f�.

Before we analyze the unwinding of the unpinned fila-
ment more closely, we first discuss the detailed wave struc-
ture of the pinned rotor. These details are difficult to discern
from the images in Fig. 6, mainly because the system is
several wavelengths wide. We, therefore, remove all outer
waves by extracting the pattern within a narrow, cylindrical
column surrounding the filament. Figure 7�b� shows the re-
sulting view into the core of the pinned scroll wave. The
disk-shaped object at the top belongs to the upward moving
planar wave. Moreover, we find that the scroll wave is
twisted, which implies that the phase � of spiral rotation
changes systematically as one moves along the filament in
vertical direction z. The quantitative dependence ��z� is
shown in Fig. 7�a�. The phase was determined by determin-
ing the angle � for which the cross correlation between an
arbitrary reference slice �here z=5� and the �-rotated slice at
height z is maximal. The data suggest a nearly linear depen-
dence over the given filament length and possibly a slight
decrease of the twist d� /dz with increasing distance from
the planar front.

The observation of pinned filaments raises several ques-
tions regarding the response of the filament to changes of the
pinning wave pulse. The most drastic change is arguably the

FIG. 6. Numerical simulation of a scroll wave filament pinned to a planar
wave. The gray scale data show the spatial distribution of the variable u. The
thick white curves are the filament. The squares underneath each box show
the corresponding, two-dimensional projections of the filament. Time be-
tween subsequent frames: 7.5. Box size: 40�40�40.
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annihilation of the wave. The image sequence in Fig. 8
shows an example for the latter scenario. The initial condi-
tions and parameters in this simulations are identical to those
in Fig. 6. However, a second planar wave is initiated at the
upper boundary of the system �see Fig. 8�a��. This wave
propagates downward and collides with the upward moving
scroll wave anchor. As expected for these excitation pulses,
the collision causes the mutual annihilation of the planar
waves and consequently the disappearance of the filament’s
anchor �Fig. 8�b��. Furthermore, the upper edge of the scroll
wave is now exposed to an initially refractory, wave-free
space. As this space recovers its excitability, the wave edge
moves upwards and begins to rotate. This rotation extends
the straight rotation backbone of scroll wave along a spiral-
shaped curve and connects it to the right, anterior boundary
�Fig. 8�c��.

Shortly after the annihilation of the pinning wave pulse,
the filament is highly curved, especially around the position
of its earlier wave-terminated end. The subsequent filament
dynamics decrease this curvature in a lassoing-type motion.
More precisely, we find the central part of the spiral-shaped
segment moves clearly downwards, while the end point at
the right anterior surface shifts only slightly in upward direc-
tion. The downward motion in the central region creates a
hooklike deformation �Fig. 8�e��. The rotation of this defor-
mation appears to be the main mechanism for unwinding the
initially highly curved filament and can be seen clearly in the
two-dimensional projections of the filament below the indi-
vidual frames.

Last, we noticed an additional, but much shorter filament
�not shown� in the upper left hand corner of the cubes in
Figs. 8�c�–8�f�. It can be discerned as a rotating wave edge.
This filament extends from the left anterior to left posterior
wall. It is not connected to the main rotation backbone be-
cause it resulted from an unconnected, curved segment of the
scroll wave edge during the time of wave anchor annihila-

tion. A similar but even shorter segment exists close to the
upper, rear corner. It appears that these shorter filaments are
pushed outward by the main vortex. This feature is reminis-
cent of a phenomenon in two-dimensional systems, where
defects are known to drift in the wave field of larger spiral
patterns.42

VI. CONCLUSIONS

Our results show that a certain type of anomalous dis-
persion, known as “wave merging,” can allow the pinning of
scroll wave filaments to traveling wave pulses. This finding
extends earlier views that required filaments to end in the
system boundary or trace topologically closed space curves
such as circles and knots.27,28 The fact that wave-pinned fila-
ments are readily observed in experiments and numerical
simulations suggests that the phenomenon is sufficiently
stable and its initial conditions easily accessible.

We also showed that filament pinning is closely tied to
the existence of nonrotating, translational defects. These de-
fects are observed in two-dimensional as well as three-
dimensional media �cf., Figs 1–3�. In both cases, they be-

FIG. 7. Results of simulations showing that the pinned scroll wave is
twisted. �a� Phase of spiral rotation as a function of distance z from the
planar front. The dashed line compares the numerical results to their best-fit
line. The positive slope indicates that the spiral uz�x ,y� turns in forward
direction as z increases. Rotation phases for z�30 correspond to the curved,
lower part of the filament and are not analyzed. �b� Partial view of the data
in Fig. 6�e� showing only the pattern within a cylindrical column �radius of
4.0� centered around the straight part of the filament.

FIG. 8. Numerical simulation of a scroll wave filament pinned to a planar
wave and of the dynamics induced by annihilation of that wave. The gray
scale data show the spatial distribution of the variable u. The thick white
curves are the filament. The squares underneath each box show the corre-
sponding, two-dimensional projections of the filament. Time between
frames �a� and �b� 6.25, �b� and �c� 1.25, �c� and �d� 13.75, �d� and �e� 27.5,
and �e� and �f� 117.5. Box size: 40�40�40.
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come nontranslating, rotating spirals upon removal of their
anchor wave, which we realized by collision with other wave
pulses. However, the resulting dynamics in three-
dimensional systems is clearly richer than in their two-
dimensional counterparts.

The numerical simulations presented here show only a
simple example for the dynamics one can expect to arise
from the annihilation of the anchoring wave pulse. Another
interesting but nonetheless simple scenario is the case of a
scroll wave confined and pinned to an expanding spherical
wave. It is not apparent how the termini of the filament move
under such conditions. It is also not clear how such a struc-
ture responds to the annihilation of the pinning wave, but we
believe that an unknotted filament loop will be created.

Last, we note that phenomena similar to wave-pinned
filaments could also exist in systems with finite bandwidth
dispersion relations. This anomaly has been observed in ex-
periments and simulations and leads to unusual wave behav-
ior known as “wave tracking.”37,43 The latter term refers to
the dynamics of wave trains that expand despite the periodic
annihilation of their outermost wave pulse. We suggest that
for these conditions, scroll wave filaments might possibly
end at the periphery of their wave-filled domains. However,
clearly more studies are needed to develop a good under-
standing of nonconventional filament end points, their dy-
namics and stability.
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