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ABSTRACT

We report results on dispersion relations and instabilities of traveling waves in excitable systems.
Experiments employ solutions of the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction confined to
thin capillary tubes which create a pseudo-one-dimensional system. Theoretical analyses focus on a three-
variable reaction-diffusion model that is known to reproduce qualitatively many of the experimentally
observed dynamics. Using continuation methods, we show that the transition from normal, monotonic
to anomalous, single-overshoot dispersion curves is due to an orbit flip bifurcation of the solitary
pulse homoclinics. In the case of “wave stacking”, this anomaly induces attractive pulse interaction,
slow solitary pulses, and faster wave trains. For “wave merging”, wave trains break up in the wake of
the slow solitary pulse due to an instability of wave trains at small wavelength. A third case, “wave
tracking” is characterized by the non-existence of solitary waves but existence of periodic wave trains.

The corresponding dispersion curve is a closed curve covering a finite band of wavelengths.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Excitable reaction-diffusion systems show a remarkable wealth
of spatio-temporal dynamics. Prominent examples include spirals,
rotating scroll waves and turbulent states [1]. The primary building
blocks of these structures are excitation pulses that, in the simplest
case, have constant profiles and steady velocities. They exist
in many experimental systems such as the CO oxidation on
platinum surfaces, corrosion systems, the Belousov-Zhabotinsky
(BZ) reaction, slime molds, neuronal and cardiac systems as well
as mouse skin [2].

The latter systems have a stable steady state and undergo
long excursions through phase space if triggered by a super-
critical perturbation. Qualitatively this excitation cycle consists of
an excited state followed by a slow recovery phase during which
the excitation threshold is raised and the system is refractory. For
traveling excitation pulses, this temporal behavior is unfolded in
space. Consequently, the pulses have a trailing refractory zone in
which the medium slowly recovers its excitability.
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The specific features of this recovery process are a major
factor in determining the velocity of infinite pulse trains. In many
experimental systems, this velocity ¢ increases monotonically
with pulse spacing (or wavelength) L and saturates at a finite
speed that equals the speed of a solitary pulse propagating into
a fully recovered medium [3]. Moreover, there is a minimal
pulse spacing below which no wave trains exist. This type
of dependence is commonly referred to as “normal dispersion
relation”. Furthermore, it was shown that in certain cases the
velocity varies as the hyperbolic tangent of the normalized period
of the wave train [4].

Over two decades ago, numerical studies revealed the existence
of anomalous dispersion relations which specifically involved
a single overshoot or damped oscillations in c(L) [5]. Both
features can be understood qualitatively as consequences of non-
monotonic recovery profiles [6,7]. Furthermore, Winfree showed
that anomalous dispersion can allow spiral waves to rotate at
more than one characteristic frequency [8]. In addition, more
recent studies documented anomalies involving band-gaps and
bistability [9]. Experimentally dispersion relations with a single
overshoot were found in the catalytic reduction of NO with CO
on platinum surfaces [10], a BZ-type reaction in which malonic
acid is replaced by 1,4-cyclohexanedione (CHD) [11,12], and
possibly the slime mold Dictyostelium discoideum [13]. We would
also like to mention some recent publications on the attractive
interaction between pulses [14] and on the interaction of pulses
with pacemakers [15].
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Fig. 1. Space-time front trajectories with tracking (a), merging (b), and stacking (c) dynamics. Initial concentrations: [H,SO4] = 0.60 M, [CHD] = 0.20 M, [NaBrOs;] = 0.20M

(a),0.25 M (b), and 0.30 M (c), and [Fe[batho(S03),]3] = 0.50 mM.

This Article discusses three distinct types of wave dynamics
in the CHD-BZ reaction and analyzes a reaction-diffusion model
that qualitatively reproduces these phenomena. Specifically,
we address questions relating to pulse stability and involved
bifurcations using numerical continuation techniques.

2. Experimental

The classic BZ reaction involves the oxidation of malonic acid
by bromate in an acidic solution and is catalyzed by redox-
couples such as Ce(Ill)/Ce(IV). Our experiments are carried out
with a modified BZ system in which malonic acid is replaced
by 1,4-cyclohexanedione [16]. We use either ferroin (Fe(phen)s)
or Fe[batho(S0s3);]3 [17] as redox catalyst. Experiments are
performed at (24 £ 1) °C.

All solutions are prepared in nanopure water (18 M£2cm)
obtained from a Barnstead EASYpure UV unit. We use the
following stock solutions: 25 mM ferroin (Fluka, puriss. p.a.),
2.0 M sodium bromate (Fluka), and 0.5 M 1,4-cyclohexanedione
(Aldrich). The latter solution is filtered through a Whatman 0.2 pm
NYL filter. Sulfuric acid (5.0 M, Riedel-de Haén) is purchased as
a standardized solution and used without further purification.
The complex Fe[batho(S0Os3);]; is prepared in a 25 mM sulfuric
acid solution by mixing a 3:1 molar ratio of 4,7-diphenyl-1,10-
phenanthrolinedisulfonic acid disodium salt hydrate (Acros) with
ferrous sulfate heptahydrate (Fluka) to yield a 25 mM catalyst
solution.

Our experiments employ thin glass capillaries as reaction
containers (Drummond 20 L MICROCAPS). Their inner diameter
and length are 0.63 mm and 64 mm, respectively. A monochrome
charge-coupled-device camera (COHU 2122) is used to monitor
changes in the absorption profiles along the capillary tubes. The
video signal is digitized with a low-noise image-acquisition card
(Data Translation DT3155) to yield individual video frames of 640 x
480 pixel at 8 bits per pixel. These image data are acquired every
(0.25—1.00) s using commercial software (HLImage++97). Further
analysis uses in-house programs written in IDL (Interactive Data
Language, Research System Inc., Version 5.2).

3. Experimental results

Fig. 1 shows space-time plots that illustrate three qualitatively
different regimes of wave dynamics in pseudo-one-dimensional
CHD-BZ systems. The three experiments differ in the employed
concentration of sodium bromate which was increased from
020 M in Fig. 1(a) to 0.30 M in Fig. 1(c). The individual

space-time plots are constructed by piling up sequences of
spatially one-dimensional absorption profiles. In the resulting
data, each oxidation pulse is represented by a continuous band of
low absorption values. The actual front positions of the individual
pulses are measured as the space-time coordinates that are
associated with largest spatial gradients and temporally decreasing
absorption. Consequently, we obtain a trajectory x,(t) for each
pulse where the index n counts subsequent pulses in increasing
fashion. These trajectories are plotted in Fig. 1. All pulses are
initiated at spontaneous pacemakers located slightly below x = 0.
In these examples, all waves travel from the left to the right.

The space-time plots in Fig. 1 illustrate tracking (a), merging
(b), and stacking (c) behavior. In the case of wave tracking, all
pulses emitted into the medium vanish. However, each pulse
travels farther than its predecessor and, hence, a large wave train
can form. The expansion of this wave train depends strongly on
the period of wave initiation. Furthermore, other experiments
show that the wave train collapses but re-grows if the pacemaker
stops intermittently. The expansion of a wave pattern in the
tracking regime clearly involves a traveling boundary. This leading
edge in itself behaves like a propagating front and connects the
homogeneous rest state (right side of Fig. 1(a)) to the periodic pulse
train. It has a distinctive but small propagation velocity which is
reciprocal to the slope of the border between the waves and the
unexcited medium. For these conditions, we have never succeeded
to initiate or observe a solitary pulse.

For wave merging, solitary pulses exist but propagate at
comparably small speeds as illustrated by the leading front in
Fig. 1(b). The trailing waves are faster and vanish in close vicinity of
the leading pulse. A similar difference in the velocities is found for
stacking waves (Fig. 1(c)), however no pulse annihilation occurs.
In this third case, trailing fronts decelerate as they approach a slow
moving “frontier” pulse and adjust their velocity to the speed of
their predecessor. This process creates dense wave packets that
expand steadily as more and more pulses are incorporated. We
note that an earlier study shows that the resulting shock line is well
described by the Rankine-Hugoniot relation [18,19].

The formation of densely-stacked clusters can also occur in a
more complex fashion. Fig. 2 shows a time-space plot of stacking
waves for different experimental conditions. In this scenario, the
waves stack via a cascade of bunching events. In Fig. 2, we initially
observe the formation of several pulse doublets. Later these
doublets appear to form larger pulse multiplets. This behavior has
been observed also in numerical simulations by Rinzel et al. [5,20].
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Fig.2. Space-time trajectories of fronts in a system with bunching dynamics. Initial
concentrations: [H,SO4] = 2.0 M, [CHD] = 0.15 M, [NaBrO3] = 0.14 M, and
[ferroin] = 0.50 mM.

It can be interpreted as the creation of metastable pulse clusters
that are mutually separated by increasingly large, and hence less
unstable, distances.

A characteristic feature of wave stacking is the interpulse
spacing within the stacked pulse multiplets. Qualitatively, this
spacing can be interpreted as the wavelength Ly for which the
speed of a wave train equals the speed ¢ of a solitary pulse in a fully
recovered medium. For large wavelengths L, the stability criterion
isdc/dL|;—, > O (see, for instance, [7]).

Closer inspection of our experimental data reveals small but
systematic variations in Ly. For example, Fig. 1(c) clearly shows
that the front spacing between the leading pulse n = 1 and its
immediate successor n = 2 is larger than the distance between
fronts 2 and 3. This phenomenon is quantified in Fig. 3 by plotting
the time-independent spacing L, = x,.1(t) — x,(t) as a function
of the pulse number n.

Fig. 3(a) shows L, data for five different concentrations of
the reactant NaBrOs. For each concentration, L, decreases with
increasing values of n to level off at about 0.4 mm. Moreover,
L, increases systematically with increasing concentrations of
NaBrOs. A similar dependence is shown in Fig. 3(b) where three
different concentrations of the organic substrate CHD are analyzed.
Notice that L, varies by a factor of nearly eight and that larger
concentrations of CHD cause smaller stacking distances.

Overall, the data in Fig. 3 show that the pulse spacing in stacked
wave clusters varies within its leading region. This variation decays
rapidly with n and is pronounced only for the first three or four
pulses. We emphasize that this dependence is not described by the
simple kinematic criterion ¢(Ly) = ¢p and dc/dL|;—;, > 0.

4. Model and numerical integration results
4.1. Model
Earlier studies show that stacking, merging and tracking

behavior can be found in a three-variable reaction-diffusion model
[21,22]. In addition, it reproduces characteristic experimental
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Fig. 3. Dependence of the stacking wavelength L on the number of the
wavelength for various initial NaBrOs (a) and CHD-concentrations (b). Other initial
concentrations are the same as in Fig. 1(a). [NaBrOs] in (a) are: @ = 0.24 M,
e = 025M, 4 = 026 M, v = 0.27 M, and ¢ = 0.28 M. In (b) the CHD-
concentrations are @ = 0.10 M, e = 0.13 M, and 4 = 0.15 M.

observations such as firing sequences close to the stacking-
merging transition and an obstacle-free nucleation mechanism of
spiral waves in the merging regime. These findings suggest that the
model captures the essential features of the wave dynamics in the
CHD-BZ system. The model considers the spatio-temporal changes
of one activator species u and two inhibitors referred to as v and
w. In this Article, we consider a spatially one-dimensional version
with one diffusive variable

Uy = F(U, v, W) + Uy,
ve = G(u, v, w), (1)
wy = H(u, v, w).

The rate laws are

F(u,v,w) = gu(l —u) (u— HTw>

Gu,v,w)=u-—v,
Hu,v,w) =B —w) — yuw.

(2)

The parameters ¢, a, 8, y, and § are dimensionless constants. For
§ = 0, Egs. (1) and (2) are a specific case of the frequently studied
Barkley model [23]. Moreover, Egs. (1) and (2) are similar but not
identical to the Krug model of the photosensitive BZ reaction [24],
which itself is based on the classic Oregonator model [25]. These
similarities suggest a possible interpretation of u, v and w as the
concentrations of the chemical species HBrO,, oxidized catalyst
and Br—, respectively.

Qualitatively, a typical unidirectional pulse in this model can
be described as a propagating region of high u values in which the
inhibitor w decreases while the inhibitor v increases. In its wake,
these changes reverse and, thus, set up profiles that give rise to
the aforementioned anomalies in the dispersion relation of wave
trains. A convenient, and also intuitively approachable, bifurcation
parameter is § on which our analyses will concentrate. We note
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that also negative values of § are considered as they are relevant for
understanding the origin of anomalous dispersion in this model. All
other parameters are kept constant at

€e=10x10"%  a=07, B=03, y=50.

4.2. Numerical integration of full PDE

In this section, we present some results obtained by numerically
integrating Eq. (1) using a forward Runge-Kutta time stepper of
fourth order. The second derivative in space is approximated using
a three-point stencil. No-flux (von Neumann) boundary conditions
were imposed on both sides of the integration domain.

The phenomena of bunching, stacking, merging and tracking
have been numerically reproduced with a high accuracy elsewhere
(see, for instance, [21]). In Fig. 4(a) we revisit one of these findings
for the example of four rightward traveling pulses which form
a densely stacked wave packet. This stacking process is clearly
due to the larger velocities of the three trailing pulses. Notice
that the speed of the leading pulse is constant and identical
to the velocity of the resulting, stable pulse quadruple. These
dynamics can apparently be found for any number of pulses and
in this respect the data in Fig. 4(a) are qualitatively similar to the
experimental observations shown in Fig. 1(c). Note that the pulse
quadruple is adsorbed by the no-flux boundary.

Now we focus on a new feature of bunching, namely on the local
increase of the v inhibitor concentration prior to a bunching event.
Fig. 4(b) shows space-time plots of Eq. (1) in one spatial dimension,
which was periodically forced at one end by injecting new pulses
into the medium. The example in Fig. 4(b) involves three distinctive
bunching events in which pulses form pulse pairs (pay attention
to the positions marked by arrows). One additional event causes
pulse pairs to form a pulse quadruple. The latter case is marked by
the letter Q in Fig. 4(b).

The interesting phenomenon resolved by this simulation is a
local increase of v prior to the bunching event. Notice that this
amplitude change occurs at all four bunching location in Fig. 4(b).
Moreover, the value of the v variable remains larger than that of
the leading (first) pulse in the pulse pair for all times after the
bunching event. We suggest that the increase of the v variable
during bunching events may be related to the nonequidistant
wavelengths discussed in the context of the experimental Fig. 3.

Now we would like to compare our numerical finding to
previously reported experimental results in which excitation
pulses in a BZ system greatly increased their width while
undergoing merging or tracking dynamics. In the corresponding
time-space plots, such pulses create striking, trumpet-like traces
(please compare Figs. 1 and 2 in [26]). This observation is another
indication for changes in the v variable close to the location where
two or more pulses begin to interact strongly and might hence be
closely related to the amplitude shown in Fig. 4(b).

Although the phenomena of attractive pulse interaction can be
easily verified in direct numerical simulations such as presented in
Fig. 4, the underlying mechanism (and the question if there is any)
of bunching and stacking in our model remains unresolved by the
simulations. In the following section we are going to demonstrate
that the attractive pulse interaction is indeed caused by a certain
bifurcation, namely, by the orbit flip bifurcation of the homoclinic
trajectory that describes the spatial profile of the solitary pulse.
We will try to convince the reader that the orbit flip plays the role
of an “organizing center” for the phenomena of attractive pulse
interaction. Additionally, we will show that the phenomenon of
tracking can also be traced down to a fold on the bifurcation line
for the homoclinic orbit.

5. Traveling waves

The aim of this section is to provide an analysis, which is
complementary to the previous experimental results and explicit
time-stepping numerics by considering the so-called traveling

" time

Fig. 4. (a) Time-space plot showing the stacking of four pulses to a stable wave
packet obtained by numerical integration of Egs. (1) and (2). The space and time
axes span 800 and 500 units, respectively. The grey scale corresponds to the value
of the v variable. The four pulses are initiated at the left system boundary with a
time difference of 7.0 time units. With the exception of § = 0.26, all numerical
and model parameters are given in the main text. (b) A more complicated stacking
scenario involving additional pulses. The pulses are initiated at a period of 8.5 time
units and § = 0.265. In the top portion, the spatio-temporal evolution of the
variable v is also shown as surface heights revealing a local increase of v prior to
the bunching events (marked by bold arrows). The two arrows labeled with letter
Q mark the formation of a quadruple of pulses from two pulse pairs.

waves, which propagate at a constant speed and with a constant
profile. They can numerically be obtained as solutions of a certain
ODE with a high degree of accuracy using a boundary-value
problem solver.

5.1. Traveling waves ODE

Introducing the co-moving coordinate system x — x — ct
(c velocity of the frame), we obtain the existence equations for
traveling waves
Uy + Cuy + F(u, v, w) =0,
cvy + G(u, v, w) =0,
cwy + H(u, v, w) =0,
which we cast as a system of four equations of the first order:
u, =U,

vy = —¢'G(u, v, w),
(3)

Wy = —c_1H(u, v, w),
Uy = —cU — F(u, v, w).

A solitary pulse (periodic wave train of wavelength L) corresponds
to a homoclinic trajectory (limit cycle of period L) in Egs. (3).
We search for those solutions in Egs. (3) with the help of the
continuation software AUTO 2000 [27]. Although a solitary pulse
may have several high-amplitude peaks, we will refer to it as a
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Fig. 5. Examples of pulse profile for § = —0.1(a), § = 0 (b), and § = 0.1 (c). The red solid, green short-dashed, and blue long-dashed lines represent the variables u, v, and
w, respectively. (d) Homoclinic connections for the above § values in the three-dimensional (u, v, w) space. For clarity, the curves are shifted along the w axis placing their
steady states at the origin. Here, the red solid, green short-dashed, and blue long-dashed curves correspond to § = 0.1, 0.0 and —0.1, respectively.

solitary one. This terminology stresses that the pulse is localized
in space and does not occupy the entire 1D domain as in the
case of spatially periodic wave trains. Notice that it differs slightly
from the usage of the word in the earlier Sections. Furthermore,
a solitary pulse has a unique propagation velocity c¢ for every
parameter set, whereas for periodic wave trains the propagation
velocity ¢ depends on the wavelength L. In the following, we
continue to refer to the dependence ¢ = c(L) as the dispersion of
the wave train.

Comparing the homoclinics in our model to others such as [5],
let us emphasize here we are dealing with a homoclinic trajectory
to a saddle equilibrium with purely real leading (the closest to
the imaginary axis) eigenvalues. Thus, the wake of the pulse is
monotonous and there are no small-amplitude oscillations behind
it as in the case of homoclinics to a saddle-focus equilibrium.

5.2. Solitary pulses

Starting a continuation in parameter § with a fixed point of
Egs. (3) (u, v, w,U)T = (0,0, 8, 0)" with the velocity ¢ = 3.0
and § = 1.0, we detect several branches of equilibria and one
of those undergoes a Hopf bifurcation at § ~ —3.69 x 1073
From that point, we unfold a branch of limit cycles in Egs. (3)
performing continuation in the velocity ¢ and the wavelength L. For
large enough values of L, the periodic solution is used as a starting
solution to compute a homoclinic solution, representing a solitary
pulse in the reaction-diffusion system.

We find that depending on the sign of §, solitary pulses have
qualitatively different profiles. This result is illustrated in Fig. 5. The
most important difference is the decay of the w variable behind
the pulse. For negative §, the w wake of the pulse approaches the
asymptotic value w = § from above (Fig. 5(a)) while for positive
8 the w wake of the pulse approaches the asymptotic state w = §
from below (Fig. 5(c)). For the boundary value § = 0, the variable
w does not show any dynamics at all but remains zero along the
whole profile of the pulse (Fig. 5(b)). Also note the different widths
of the u pulses in Fig. 5(a)-(c).

To obtain a better understanding of the §-dependence of pulse
dynamics, we plotted the homoclinics in a 3D phase space spanned
by the three variables u, v and w (Fig. 5(d)). The graphs are
generated for the same § values explored in (a-c). For clarity, we
shifted the homoclinic solutions in the w direction in such a way
that the origin is always at w = 0. This is readily accomplished
as the steady state is given by u = v = 0, w = 4. Fig. 5 shows
that for different values of §, the homoclinics depart from the fixed
point in either the positive or negative w direction. The return of
the homoclinics, however, follows the same path for all §.

From the viewpoint of dynamical systems, this change of the
homoclinics configuration is known as orbit flip (see e.g., Ref. [28]).
An orbit flip is a codimension-two bifurcation, which means that
it occurs for distinctive values of two parameters in Egs. (3). In
our case, these parameters are the propagation velocity of the
pulse ¢ and the model parameter § which controls the behavior
of w in the wake of the solitary pulse. Notice, however, that the
parameter c is is not present in the original reaction diffusion Eqs.
(1) but rather results from the traveling wave ansatz used to derive
Egs. (3). In experiments and numerical simulations of the full
reaction-diffusion model, the pulse clearly selects its propagation
velocity solely on the basis of the explicit model parameters.
Hence, the orbit flip is controlled only by the parameter §. Using
the HOMCONT subroutines of AUTO [27], we find within the typical
numerical accuracy the orbit flip at § = 0.

5.3. Periodic wave trains

Spatially periodic wave trains are parameterized by their
wavelength, or equivalently spatial period, L. The propagation
velocity of a wave train depends on L, thus, resulting in a dispersion
¢ = c(L), which can also be multi-valued. As a rule, there is a
well-defined limit for L — oo, namely the propagation velocity of
the solitary pulse. For large wavelengths, the slope of dispersion
determines how pulses interact inside a wave train: a positive
slope reflects the repulsive interaction of pulses and, thus, stability
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Fig. 6. (a) Dispersion curves for § = —0.1 (solid red line), § = 0.0 (short-dashed blue line), § = 0.1 (long-dashed green line), and § = 0.3 (closed dashed line). (b) Profile
of a period-2 wave train for § = 0.1 with a wavelength of L = 120. The red solid, green short-dashed, and blue long-dashed lines correspond to the variables u, v, and w,
respectively. (c) Velocity of solitary pulses (continuous red line) and period-doubled wave trains (blue dashed) as a function of the parameter §. (d) Magnification of dashed
box in (a) showing the overshooting, primary dispersion curve for § = 0.1 (long-dashed green line) and the dispersion curve of period-doubled wave trains (continuous

purple line).

of the whole wave train whereas a negative slope in the dispersion
means attractive interaction of pulses and instability of the wave
train (see [29,30] and references therein).

For § < O, the dispersion curve of wave trains in Eqs. (1)
has positive slopes. A representative example is shown as the red
curve in Fig. 6(a). However, the orbit flip bifurcation for the solitary
pulses at § 0 has a profound impact on the dispersion of
spatially periodic wave trains. For § > 0, there is an overshoot in
the dispersion curve. This case is exemplified by the green line in
Fig. 6(a) and further illustrated in Fig. 6(d). A part of the dispersion
with large L has a negative slope. Moreover, there is a period-
doubling bifurcation close to the apex of the dispersion curve for
8 > 0. This point is labeled ‘PD’ in Fig. 6(d). At that point, a new
branch of spatially periodic wave trains bifurcates. In these wave
trains, every spatial period contains two high-amplitude maxima.
A typical example is shown in Fig. 6(b). Note that here we cannot
see a difference in the maximal values of the v variable in the first
and second pulse in the pulse pair contrary to Fig. 4. Both branches
of the bifurcated dispersion curve have negative slope. For large
wavelengths, the branch of doubled wave trains asymptotically
approaches the curve describing solitary pulse pairs.

For a monotonic dispersion relation, such as the red curve in
Fig. 6(a), the fastest wave train is of infinite wavelength. This case
is identical to the solitary pulse solution. However, if there is an
overshoot in the dispersion, the wavelength of the fastest wave
train is finite. The existence domain of periodic wave trains with
finite wavelength and that of solitary pulses differ. To illustrate
this important finding, we plot in Fig. 6(c) the §-dependence of
the velocity of solitary pulses (red line) and period-doubling wave
trains (blue dashed line). Note that both red and blue curves are
double-valued, i.e. there are two velocity values for certain §.
One usually expects the slower one to be unstable. This topic has
been discussed rigorously by others for similar models such as
the FitzZHugh-Nagumo equations [31]. Whereas the slow unstable
pulse and pulse trains cannot be observed experimentally, their
existence is quite important: The point in the parameter space

where the fast and the slow pulses meet is a fold point and no
pulses exist beyond it. Thus, the point of transition between the
fast stable and the slow unstable pulses defines the extinction
threshold for one-dimensional pulse propagation.

The most interesting feature of the results in Fig. 6(c) is that the
turning points of the blue (6 = 0.42) and the red curve (§ = 0.29)
do not occur at the same § value. Accordingly there is a range of
values 0.29 < § < 0.42 for which certain wave trains with finite
wavelengths but no solitary pulses exist. This finding is very closely
related to the fact that the purple dispersion curve in Fig. 6(a)
(6 = 0.3) occupies a finite band of wavelengths and does not
extend to L = oo. Propagation of periodic wave trains of finite
wavelengths combined with the lack of solitary pulses is clearly
identical to the pulse tracking behavior shown in Fig. 1(a).

The negative slope of the primary dispersion curve and the
emergence of period-doubled wave trains are intrinsically related.
Indeed, for dispersions with negative slope, an equally spaced
wave train is unstable to spatial shifts of individual pulses. For
example, pushing a pulse in the forward direction increases
its speed, since the interpulse distance to the preceding pulse
has decreased. Consequently, the wave train breaks into pulse
pairs. Also the negative slope of the doubled dispersion suggests
that interaction between pulse pairs is attractive. This attractive
interaction between individual pulses and/or pulse pairs in a wave
train also leads to the formation of pulse triples, quadruples, etc.
These phenomena match our experimental observations of pulse
stacking and pulse bunching, which are shown in Figs. 1(c), 2,
and 4.

In conclusion, we have shown that an orbit flip bifurcation
for solitary pulses in Egs. (1) at § 0 causes the overshoot
in the dispersion curve of spatially periodic wave trains and the
emergence of period-doubled wave trains and pulse pairs. This
bifurcation of solitary pulses explains the stacking and tracking
dynamics discussed in Section 3 and earlier publications [21].
However, the explanation of the third experimentally observed
phenomenon, pulse merging, requires additional results that will
be described in the following.
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Fig.7. (a)Dispersion curves for 8§ = —0.1. Locations (b)-(d) denotes the points on the dispersion, for which spectra are shown in (b)-(d). (b) Three spectra close to mark (b)

in frame (a) revealing a long-wavelength instability at wavelength L = 3.06. The solid red line shows the spectrum for L slightly larger than the critical one. The short-dashed
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(c) Spectrum for mark (c) in
denotes the boundary Re » = 0.

6. Stability results

6.1. Formulation of eigenvalue problem

Suppose we have an L-periodic wave train (u, v, w)(x)
(u, v, w)(x + L). In order to compute its spectrum, we formulate
the following eigenvalue problem
Uy + cu + F,u + F,v + Fyw = Al,
cv + Gyu + Gyv + G,w = Ao,
cw + Hyu+ Hyv + Hy,w = Aw

(4)

for the unknown complex-valued eigenfunction (i, v, w) and the
eigenvalue A. This set of equations is the linearization of Egs. (1) in
the moving coordinate system and capitals with a subscript denote
the linearization of the nonlinear kinetics of Egs. (1), evaluated
along the profile of the wave train (u, v, w)(x). If we consider
Eq. (4) for the boundary conditions

(@, v, w)(L) = e (i, D, W)(0), (5)

then A is in the spectrum of wave train if Egs. (4) and (5) have a
solution for a real y [32]. The spectrum A comes in curves, param-
eterized by the wavenumber y. Thus it is possible to compute it nu-
merically by performing continuation in y, starting from a known
solution, for instance, from the Goldstone mode, which is given by
the derivative of the wave train itselfand A = y = 0.

The wave train is stable, if all eigenvalues A are contained in
the left complex half-plane with the exception of the Goldstone
eigenvalue at the origin. However, if some of the eigenvalues are
in the right half-plane, the wave train is unstable. The stability of
wave trains depends on the choice of domain and the boundary
conditions [33].

The spectrum of solitary pulses with isolated point eigenvalues
can be approximated by the spectrum of wave trains with large
spatial period [29]. Every point eigenvalue of the solitary pulse is
approximated by a small piece (usually a circle) of the continuous
spectrum of the wave train. In particular, we are interested in

(a). (d) Spectrum for mark (d) in (a). Notice the location of the circle which indicates stability the of wave trains. In (c) and (d), the vertical dash

the so-called circle of critical eigenvalues, which is attached to the
origin of the complex plane being the blow-up of the Goldstone
eigenvalue of the solitary pulse. This circle reflects the stability
of the wave train with respect to shifts of individual pulses that
constitute the wave train.

For large wavelengths, the location of the circle is related to the
slope of the dispersion: for a positive slope the circle opens in the
left half-plane, showing the stability of the wave train and for a
negative slope, the circle opens in the right-half plane reflecting
instability.

Notice that the circle depends on the stability of wave trains in
an infinitely large, unbounded domain. Truncating the domain by
imposing periodic boundary conditions causes the curves to break
up into point eigenvalues. The spectrum of N pulses, which are
equidistantly placed on a ring with periodic boundary conditions
will show exactly N eigenvalues located on the continuous
spectrum (i.e., the aforementioned circle) of the unbounded
problem. In other words, setting y to % n=1,2,...,N—1results
in eigenfunctions with periods being multiples of the period of the
wave train.

6.2. Wave train stability for § < 0

For negative values of §, the dispersion of wave trains displays
a positive slope. It is interesting that there is no slower unstable
pulse for negative § and the dispersion does not contain a slower
branch, in contrast to the usual situation with two branches of
dispersion for every value of the control parameter.

The only instability of wave trains occurs at a small wavelength
L = 3.06 (see Fig. 7(a) and (b)). In the critical point, the leading part
of the spectrum has zero curvature at the origin and for L < 3.06 it
crosses into the right complex half-plane, reflecting the instability
of the wave trains. Notice that the eigenvalues closest to zero
cross first. These eigenvalues have small y and, hence, the unstable
modes have large wavelengths.

For larger wavelengths, all wave trains are stable, as illustrated
by the spectra in Fig. 7(c) and (d). The spectrum in Fig. 7(c) is a
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Fig. 8. (a) Dispersion curves for § = 0.24. Locations (b)-(d) denote the points for which spectra are plotted in (b)-(d). The short-dashed red line shows the dispersion curve
of period-doubled wave trains. The long-dashed part of the black curve is the unstable segment of the primary dispersion. (b) Three spectra close to mark (b) in frame (a)
showing a long-wavelength instability at wavelength L & 3.8. The solid red line shows the spectrum for L slightly larger than the critical one, while the short-dashed blue
line shows the spectrum in the critical point with a zero tangency at the origin. The long-dashed green line is a spectrum for L slightly smaller than L = 3.8. (c) Spectrum for
mark (c) close to the period-doubling bifurcation in (a). Note the zero tangency at the origin. (d) Spectrum for mark (d) on the black branch in (a). The spectrum for mark (d)
on the red dashed branch in (a) is qualitatively the same and the circle is also found in the positive half-plane. In (c) and (d) the vertical dash denotes the boundary Re A = 0.

typical curve attached to the origin, whereas in (d) a part of the
spectrum detaches from the rest and forms the aforementioned
circle of critical eigenvalues. The circle is attached to the origin, as
implied by the translational symmetry of the problem, and opens
into the left half-plane, showing the stability of wave trains. Upon
further increase of wavelength L that circle shrinks to the point
eigenvalue at zero at an exponential rate in L, as rigorously proven
in [29].

In summary, for negative values of § the majority of wave-
lengths shows stability of wave trains. This case turns out to be the
simplest one.

6.3. Stability in the stacking regime

Increasing & beyond zero causes a qualitative change in the
dispersion curve as shown in Fig. 8(a). The curve has a pronounced
overshoot and negative slopes for large wavelengths. Accordingly,
the asymptotic velocity of the solitary pulse is approached from
above.

Close to the overshoot, the leading (right-most) part of the
spectrum is nearly a circle. In point (c) in Fig. 8(a), the wave
train loses stability similarly to the short-wavelength instability
observed above. The tangency of the spectrum at the origin
becomes zero (see Fig. 8(c)) and a part of the circle crosses into
the right-half plane. Close to that point, a branch of period-doubled
wave trains bifurcates from the primary dispersion (red dashed
line in Fig. 8(a)).

Beyond the overshoot, the circle of critical eigenvalues is
located in the right complex half-plane. This situation is illustrated
in Fig. 8(d). Again, upon increasing L the circle shrinks to a point
eigenvalue at the origin. Another part of the spectrum, however,
remains in the left half-plane.

Usually, the spectrum of the bifurcating period-doubled wave
trains resembles that of the primary wave train in the sense that it
also contains a circle of critical eigenvalues in the right half-plane.
Qualitatively, the spectrum is similar to that shown in Fig. 8(d).
The instability of the period-doubled wave trains is again due to

attractive interaction between pairs - at least, for large wavelength
L this can be read off from the negative slope of the period-doubled
wave train dispersion ¢ = c(L) - and all considerations on the
relation between the slope of the dispersion and the stability apply
also for period-doubled waves. Analogously to the formation of
pulse pairs, the attraction between pairs is likely to induce the
formation of pulse quadruples.

The case of § > 0 differs from the behavior for § < 0 also
with regard to the slower branch of the dispersion curve. As shown
in Fig. 8(a), this branch also asymptotically approaches a solitary
pulse, which is, however, unstable. The loss in stability along the
dispersion at smaller wavelengths occurs in a similar manner as
for § < O through a zero-tangency situation at the origin (see
Fig. 8(b)).

The distinguishing stability feature in the stacking regime is
that for wavelengths beyond the apex of the overshoot, the circle
of critical eigenvalues is located in the right half-plane. This
instability is caused by the attractive interaction between (at least)
two pulses and, thus, does not occur for a single pulse on a ring.
The most unstable mode belonging to the right-most point of the
circle is found for y = 0.5, which implies that the corresponding
eigenfunction has twice the wavelength of the wave train.

Also note that the velocity of the short-wavelength instability
(b) in Fig. 8(a) is below the velocity of the solitary pulse. Hence,
solitary pulses can coexist with periodic wave trains of the equal
velocity. This is not the case in the merging regime, as described in
the following subsection.

6.4. Stability in the merging regime

The merging regime, analyzed here for § = 0.28, is
characterized by the fact that periodic wave trains and solitary
pulses cannot coexist and co-propagate at the same velocity as
in the stacking regime. Indeed, the stability onset in the short-
wavelength region is above the velocity of solitary pulses (see
Fig. 9). The only stable wave trains have velocities that are larger
than the velocity of the solitary pulse and, hence, they approach
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the solitary pulse and cause front-to-back collisions. However, as
they approach the slower solitary pulse, they effectively acquire a
smaller wavelength, enter the unstable region in the dispersion in
Fig. 9, and eventually break up due to the instability.

Considering the stability of wave trains close to the apex of the
dispersion and the emergence of double-spaced wave trains, we
find qualitatively the same results as reported for § = 0.24.

7. Conclusions

Solitary excitation pulses and wave trains exist in a great variety
of experimental systems and often show remarkable universalities
and surprising complexity. While these phenomena are most
striking in spatially two- and three-dimensional media, complex
dynamics and interesting instabilities can also be found in the
simpler one-dimensional case. Here, we presented observations
obtained from experiments with the CHD-BZ reaction that show
at least three qualitatively different types of wave dynamics,
that we refer to as stacking, merging and tracking. Moreover,
systematic surveys of this reaction system show that these
dynamics are encountered for all, or at least an extremely
wide range, of initial concentrations. Earlier studies have linked
these features to anomalous (i.e., non-monotonic) dispersion and
reproduced qualitatively many of the experimental observations
in a three-variable reaction-diffusion model. However, numerical
integrations of the model equations (Egs. (1) and (2)) are not
capable of revealing the underlying bifurcations and instabilities.

This shortfall has been addressed by our study providing deeper
insights into the aforementioned model, which most likely also
apply to the CHD-BZ system. These findings can be summarized
as follows:

e Normal dispersion of periodic wave trains is observed in Egs. (1)
and (2) for § < 0. Pulse trains are stable and their interaction is
repulsive. No stationary multipulse configurations are possible.
Solitary pulses are the fastest waves.

e Pulse stacking is caused by the overshoot in the dispersion
relation and the existence of the negative slope domain in it.
As a result, pulses in a wave train interact attractively and
form pulse pairs and multiplets. There exist wave trains with
finite wavelength that propagate faster than the solitary pulse.
Those periodic wave trains are located close to the overshoot in
the dispersion. Necessary for pulse stacking is the existence of
stable periodic wave trains traveling at the same velocity as the
solitary pulse.

e Pulse merging can be understood by looking at the stability
onset of periodic wave trains in the region of small wavelengths.
Wave trains with the same velocity as solitary pulses are now
unstable and, thus, break up once the interpulse distance is in
the unstable region.

e Pulse tracking is characterized by the non-existence of solitary
pulses. However, periodic wave trains with finite wavelengths
do exist and their dispersion relation forms a closed curve.

Furthermore, we showed that the transition from normal
dispersion for § < O to the dispersion with an overshoot for § > 0
is due to an orbit flip bifurcation of the homoclinic orbit describing
the solitary pulse. This change in the dispersion slope followed by
the change in the wave train stability is a generic phenomenon near
flips of homoclinics and has been reviewed in [30]. For the CHD-BZ
reaction, it is not fully clear whether normal dispersion can actually
be observed, as stacking behavior with an overshoot at very large
wavelength is extremely difficult to distinguish from true normal
dispersion. However, an earlier study reported good evidence
for normal dispersion under reaction conditions involving low
bromate and high CHD concentrations [12].

We also re-emphasize that both stacking and tracking can be
explained with the help of Eq. (3). In contrast, to understand
merging it is important to have the stability information about
the wave train in the short-wavelength region. Nevertheless, the
dynamics resulting from the earlier two wave regimes are equally
interesting from the viewpoint of wave stability. Lastly, there are
additional features of the experimental systems, such as the non-
uniformly spaced wave trains described in Fig. 3 that require
further investigation.

Considering the experimental significance of the presented
results, we would like to refer to [34], where phenomena similar to
stacking and merging were reported for a chemical setup different
from that of Manz et al. [21], thus suggesting a generic nature of
the effects reported in this paper.
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