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Spiral defect drift in the wave fields of multiple excitation patterns
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Spiral waves in excitable systems decay to drifting defects if forced by high-frequency wave trains. Using
the Barkley model we analyze the drift velocity in planar wave trains as a function of wave frequency. Within
two antiparallel, planar wave trains of equal frequency a defect is pushed into the collision region where it
stops. Within two circular wave fields, however, it continues its drift in a direction perpendicular to the axis
connecting the pacemakers. Depending on the forcing frequency and the initial position, this motion occurs
either away from or toward the pacemaker axis. Three circular wave fields can be used to position the defect at a
unique point close to the center of the pacemaker triangle. The results are also observed in experiments with the
Belousov-Zhabotinsky reaction.
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I. INTRODUCTION

Excitation waves are a widespread phenomenon in nonlin-
ear systems and continue to attract scientific interest, especially
in the context of reaction-diffusion media. Classic examples
include propagating reaction zones on catalytic surfaces [1],
spreading messenger signals in aggregating microorganisms
[2], and propagating action potentials in the human heart
[3]. Recent studies also identified excitation waves as a
self-defense mechanism of bee populations [4] and the cause of
traveling color bands in the skin of certain mice [5]. All of these
wave phenomena show essentially constant front velocities and
pulse shapes. In addition, interference phenomena are absent
as colliding waves annihilate similar to wildfire fronts.

In spatially two-dimensional systems excitation waves can
organize rotating vortices in which the excitation front is an
Archimedean spiral of constant pitch. In these large-scale
patterns the spiral tip is the primary pacemaker. Its frequency
as well as its trajectory (e.g., circles and epicycles) are
characteristic for a given system, although some systems
can show multistable vortex solutions [6,7]. The spiral tip
is also a phase singularity and as such has certain particle-like
characteristics [8]. Furthermore, the creation and annihilation
of spirals occurs via counterrotating pairs [9]. Alternatively,
spirals may vanish at the system boundaries [10,11].

Over the past decades numerous approaches have been ex-
plored to reposition spiral tips and to induce their annihilation
[12–15]. These efforts are motivated partly by the hope to re-
move rotating action potentials in the human heart where they
are believed to cause tachycardia and fibrillation [3,16,17].
One approach employs spatially homogeneous variations of
system parameters to induce resonant or entrained drift of the
spiral tip [18,19]. This method and related feedback algorithms
[20] have been demonstrated primarily for the photosensitive
Belousov-Zhabotinsky (BZ) reaction [21]. Other approaches
involve parameter gradients (e.g., in temperature) [22] and
vectorial perturbations such as applied electric fields [23].
Unfortunately it is technically challenging or impossible to
apply these methodologies to the human heart.
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A technically simpler but dynamically more indirect way
to induce spiral drift was suggested by the Pushchino group
in the mid 1980s [13,14]. In their studies spiral waves are
perturbed by periodic wave trains of frequencies higher than
the frequency of the spiral. A simple way to generate these
wave trains is to trigger concentric target patterns from small
oscillating or periodically forced regions. With every collision
the demarkation line between the spiral arm and the target
waves shifts toward the “slower” spiral tip. When the forcing
waves reach the spiral core region the tip fails to complete
its orbit and deteriorates to a mere defect of the growing
target pattern. In contrast to the nontranslating spiral tip, the
defect undergoes translation within the surrounding pattern.
In numerical simulations and kinematic models Krinsky et al.
showed that this drift can move the defect away or—perhaps
more surprisingly—also closer to the fast pacemaker [24].
This drift phenomenon has also been observed in the BZ
reaction and in experiments involving colonies of amoeba and
slices of cardiac tissue [25–29]. Notice that after cessation of
the wave forcing all nonannihilated defects regrow into large
spiral wave patterns.

Here we revisit spiral wave defects and their drift dynamics
using the Barkley model [30] and experiments employing the
autocatalytic BZ reaction. We show that the dependence of the
drift direction on the forcing period can be more complex than
reported earlier. In addition, we analyze the drift dynamics in
the presence of several pacemakers and establish some simple
rules for predicting defect drift along the collision regions
between those trigger sites.

II. MODEL

For our simulations we numerically integrate the Barkley
model

∂U

∂t
= DU∇2U + 1

ε

[
U (1 − U )

(
U − V + b

a

)]
, (1a)

∂V

∂t
= DV ∇2V + U − V. (1b)

In these coupled reaction-diffusion equations U and V

are time-dependent variables. We focus strictly on the case
of equal diffusion coefficients (DU = DV = 1). Also the
parameters a = 1.1, b = 0.18, and ε = 0.02 are kept constant.
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The latter values induce excitable point dynamics around
a stable steady state. In this system spiral waves exist and
their tips rotate along circular trajectories. These dynamics are
referred to as rigid rotation. We identify the spiral tip as the
intersections of the u = 0.5 and v = a/2 − b = 0.37 isocon-
centration curves. Our simulations employ Euler integration
with a time step of 5 × 10−3. The Laplacians are computed
using the five-point stencil. The system is surrounded by
Neumann boundaries and resolved with at least 250 × 250 but
typically 500 × 500 grid points at a grid spacing of 0.2. Target
patterns and planar wave trains are initiated by periodically
increasing the value of the activator U within small regions
and thin stripes, respectively.

III. COMPUTATIONAL RESULTS

Figure 1 shows two typical examples of spiral defects
being forced by planar waves traveling in +y direction. The
images are the superposition of six (a) and seven (b) successive
V -concentration snapshots obtained during approximately one
rotation cycle of the defect. They are computed as the local
maxima of these pattern sets and encode the wave positions
as bright regions. The most striking features in Fig. 1 are the
dynamical quiescent (dark) spiral cores. The defect rotates
around these core regions in counterclockwise direction.
Figure 1 also shows that the defects tend to create a shock-like
line of V-shaped wave segments. Each of these cusps forms in
collisions between the round spiral arm and the planar waves.

As described and analyzed in earlier studies, the wave-
induced motion of a spiral defect is caused by the repeated
collisions between the defect tip with the forcing wave fronts.
Consequently, the ratio between the period of free spiral
rotation Tspiral and the period of the forcing wave train Tforce

is a crucial parameter. In Figs. 1(a) and 1(b) this ratio equals
0.8 and 0.95, respectively. Accordingly, the defect tip in (a)
undergoes essentially a head-on collision with the planar front,
while in (b) it can nearly complete its rotation cycle.

Krinsky et al. studied defect motion for the FitzHugh-
Nagumo model and suggested several kinematic models. The
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FIG. 1. Simulation of spiral defects in planar wave trains. The
frames show the superposition of several snapshots of the V -
concentration pattern obtained during approximately one rotation
of the defect. The time between subsequent snapshots is 1.5
(dimensionless time units) and the wave from the first snapshot in
each frame is labeled as “1”. The forcing waves travel in +y direction.
The frequency ratio between the forcing waves and the unperturbed
spiral wave is 0.80 in (a) and 0.95 in (b). The defect drifts toward the
upper left in (a) and toward the (lower) right in (b).

simplest model describes the drift trajectory as a chain of
circular but incomplete spiral tip orbits [13]. The radius of
the circular arcs R and the corresponding angular frequency
ωspiral = 2π/Tspiral are thought to match the parameters of the
free spiral. In this chain each arc segment starts in normal
direction to the forcing front during a wave-tip collision and
ends in the subsequent collision.

In this model the drift velocity and direction follow from
the time Tcol between subsequent tip-wave collisions and the
length and direction of the secant connecting the start and end
point of the corresponding circular arc. A simple geometric
analysis yields

vx = R [cos(ωspiralTcol) − 1]

Tcol
, (2a)

vy = R sin(ωspiralTcol)

Tcol
, (2b)

where vx is the average drift velocity along the planar forcing
fronts and vy the average velocity component in normal
direction to the fronts. Negative values of vx indicate motion
away from the spiral arm of the defect, thus increasing the
length of the wave front ending in the defect. Furthermore,
positive values of vy imply that the defect moves in the
direction of the forcing waves. For instance, the defect in
Fig. 1(a), which is pushed toward the upper left corner, has
a drift velocity with vx < 0 and vy > 0. Notice that if vy �= 0,
the collision time Tcol does not equal the forcing period Tforce.
This Doppler effect is described by the implicit equation

cf (Tcol − Tforce) = R sin(ωspiralTcol). (3)

Figure 2(a) shows the dependence of the drift velocity on the
employed forcing period in our Barkley model. The forcing
period is rescaled by dividing Tforce by the rotation period
Tspiral of freely rotating spiral waves. Notice that period ratios
below approximately 0.55 do not yield stable planar wave
trains in this system. This limit is due to the absolute refractory
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FIG. 2. (Color online) Spiral defect motion in planar wave trains
computed from numerical simulations. (a) Velocity components vx

(black circles) and vy (red squares) as a function of the ratio between
the periods of the forcing wave train Tforce and the unperturbed spiral
Tspiral. The forcing waves travel in +y direction. The defects rotate
counterclockwise. (b) Shift in defect position per forcing period
obtained from the same data by graphing vyTforce vs vxTforce. Notice
that drift into three different quadrants is observed.
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zone in the wake of excitation waves. In Fig. 2(b) the same
data are replotted in terms of the distances covered by the
defect during one forcing cycle. Both graphs show that defect
drift occurs into the quadrants I, II, and IV of the Cartesian
plane. Defect drift with both negative vx and negative vy values
(quadrant III) does not exist for the investigated set of model
parameters.

The results in Fig. 2 cannot be described by the simple
kinematic model in Eqs. (2) because its specific construction
of the tip trajectory does not allow for drift into three quadrants.
On the contrary, in the model both components of the average
drift velocity change their sign only once under variation of
the forcing period. Moreover, we conclude that the strongly
noncircular shape of the data curve in Fig. 2(b) cannot be
described by any model involving simple chains of circular arc
segments. It is likely that the primary cause of this discrepancy
lies in the positive vx values found for period ratios Tforce/Tspiral

between approximately 0.9 and 1.0. Notice that under this slow
forcing the defect tip never fully collides with incoming wave
front [see Fig. 1(b)]. The effect of the incoming wave on the
tip is rather caused by the V-shaped wave cusp. Due to its
high curvature, this cusp accelerates rightward and thus could
cause the unexpected rightward drift of the defect tip. This
suggests that the drift behavior computed in this study requires
kinematic models that describe the drift trajectory with curves
of nonconstant radius. However, such modeling efforts are not
further pursued here as they are beyond the scope of this work.

The primary focus of this study is the investigation of spiral
defect dynamics in systems with multiple wave sources. The
simplest example involves two planar wave trains of identical
frequency that emanate from parallel line sources. Such wave
trains collide along a stationary stripe located between the
lines of wave initiation. For forcing periods that induce spiral
defect drift with vy > 0, any defect will move into the collision
region where it experiences forcing from both wave trains. This
situation is illustrated in Fig. 3(a). Here downward (upward)
propagating planar waves are initiated along the upper (lower)
system boundaries. The defect is initially located in the lower
wave field and forced to drift toward the upper left corner of the
system. This motion brings the defect into the collision region
where it stops. The temporal evolution of the corresponding
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FIG. 3. (Color online) Defect drift in the wave field of two
planar wave trains. The defect stops within the collision zone of the
planar waves. (a) V -concentration pattern of the halted defect with
its superposed (cyan) trajectory. The arrows indicate the direction
of wave propagation and defect drift. (b) Time evolution of the x

(red/dark gray) and y (green/light gray) coordinates of the defect tip.
Forcing period Tforce = 9.5 and Tforce/Tfree = 0.8.

tip coordinates are shown in Fig. 3(b). The data consist of three
distinct phases. Initially the planar wave fronts have not yet
reached the spiral tip and the tip is stationary. The waves reach
the tip at t ≈ 100 and the expected steady drift commences.
Around t = 600 the defect reaches the collision zone and its
motion ceases.

This phenomenon can be understood qualitatively by
considering the spatial symmetry and temporal aspects of
the two-wave forcing process in Fig. 3. The stopped defect
experiences successive perturbations from collisions with
upward and downward moving fronts. The time intervals
between these collisions are constant if the defect is located
exactly on the collision line of the two wave trains. For such
a position, subsequent collisions induce trajectory segments
that are the mirror image of each other. Consequently no
defect motion along the collision line can occur. Moreover,
any deviations away from the line (i.e., in upward or downward
direction) are counteracted by the normal (single source) drift
mechanism.

The timing between subsequent collision events is altered
if the collision line separates two nonplanar wave trains of
equal frequency. A simple example of such a scenario is given
by two target patterns (Fig. 4). Here circular fronts collide and
create V-shaped cusp patterns along the system’s horizontal
midsection. It was noted elsewhere [25] that defects in (single)
circular target patterns drift along trajectories that are well
described by logarithmic spirals. This feature is also found in
Fig. 4(a) where the initial drift trajectory (cyan line of loops)
has been fitted to a logarithmic spiral (smooth yellow curve).
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FIG. 4. (Color online) Two representative examples of defect
drift in the wave field of two circular wave trains. (a) and (c)
V -concentration pattern of the spiral defect with its superposed (cyan)
trajectory. The arrows indicate the direction of the defect drift. The
smooth (yellow) curve in (a) is a logarithmic spiral. (b) and (d) Cor-
responding time evolution of the x (red/dark gray) and y (green/light
gray) coordinates of the defect tip. The target patterns have frequen-
cies of Tforce = 9.5 in (a) and (b) and 7.0 in (c) and (d). Accordingly
Tforce/Tspiral is 0.8 in (a) and (b) and 0.59 in (c) and (d).
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More importantly, we find that the defect does not stop once
it reaches the collision zone between the two target patterns.
It rather performs a sharp turn and continues its motion along
the collision line.

We observed that the drift direction in the collision zone
depends on the forcing frequency. To illustrate this finding,
Fig. 4 shows two examples. In Figs. 4(a) and 4(b) the target
patterns have a relatively long period with Tforce/Tspiral = 0.8,
while in Figs. 4(c) and 4(d) forcing is fast with Tforce/Tspiral =
0.59. The corresponding defect motion in the collision zone
causes a decelerating drift toward the middle of the system
in Figs. 4(a) and 4(b) and an accelerating, rightward motion
toward the system boundary in Figs. 4(c) and 4(d). Notice that
slow forcing [Figs. 4(a) and 4(b)] pushes the defect close to the
line connecting the two target pacemakers (x = 50 in Fig. 4).
This location appears to be a stable attractor for the defect.

As mentioned above, all defect positions along the sta-
tionary collision line are stable against perturbations that
displace the spiral tip away from this line. The observed
drift along the collision line, which was absent in the case
of forcing with planar waves, must be due to the different
time intervals between wave-defect collisions as well as the
different directions of the forcing fronts. For instance, for the
case shown in Figs. 4(c) and 4(d) the defect first collides
with an upward moving wave (lower target pattern), then
shortly after with a downward moving wave (upper target), and
finally undergoes collision-free motion prior to repeating the
cycle. The latter time interval is the longest in this three-step
cycle. Also notice that the timing and orientational aspects
of this forcing cycle change as the defect is pushed outward.
Simulations on very large grids show that the drift velocity
approaches the velocity expected for forcing in a single planar
wave train. The latter effect is clearly caused by increasing
angles between the colliding fronts in the V-shaped cusps. For
large distances from the pacemaker pair, this angle approaches
π and, hence, the case of defect drift in single planar fronts.

Further investigations reveal that the direction of the defect
drift within the collision zone depends not only on the
forcing period but also on the exact position of the defect
within this region. Figure 5 summarizes the motion of several
spiral defects for the fast and slow forcing scenarios that we
already analyzed in Fig. 4. We find that for high-frequency
pairs of target patterns [Figs. 5(a) and 5(c)] the motion is
organized by an attractor at x = 50 and two repellers around
x = 20 and 80. If the defect enters the collision zone at a
point located between the repellers, it is guided toward the
attractor. However, defects outside this interval are pushed
away from the attractor and consequently annihilate at the
system boundary. For slow forcing [Figs. 5(b) and 5(d)], the
attractor does not exist and only outward motion is observed.
The specific frequency-dependent existence of these fixed
points suggests that the attractor might be generated in a
subcritical pitchfork bifurcation. However, we have not yet
systematically explored this interesting feature.

In the following we consider the case of defect drift in the
wave fields of three target patterns. Like in the earlier case, the
target patterns have identical frequency. This case is interesting
only for conditions that cause outward motion under forcing
with two target patterns as inward motion establishes a stable
position along one of the axes connecting pairs of pacemakers.
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FIG. 5. (Color online) Drift trajectories (a) and (b) and corre-
sponding x coordinates (c) and (d) of spiral defects with different
initial positions. The forcing waves are generated by two target
patterns analogous to the situation shown in Fig. 4. The wave periods
of the target patterns are Tforce = 9.5 in (a) and (c) and 7.0 in (b) and
(d). For the lower period the system shows one stable attractor “s” at
x = 50 and two repellers “u” at approximately x = 20 and 80. For
the higher period, the central point is a repeller. Left and rightward
diverging trajectories are plotted in blue and black (darker lines in
grayscale), respectively, while attractor-bound curves are shown in
red and magenta (lighter lines in grayscale).

The latter situation is obviously identical to the generic case in
Figs. 4(a) and 4(b). For motion away from this axis we initially
observe behavior analogous to the dynamics in Figs. 4(c) and
4(d). However, the combined wave fields of the triple target
pattern have a unique point in which waves from all three
wave sources collide. This “triple” point is also the terminus
of the three collision lines between target pairs and the question
arises whether a spiral defect can be parked at this location in
a stable fashion.

A typical example of the three-pacemaker scenario is shown
in Fig. 6. Here the wave fields are visualized by superposing
V -concentration patterns computed during one forcing period.
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FIG. 6. (Color online) Spiral defect drift in the wave field of
three circular wave trains. (a) The circular patterns (blue) are the
superposition of V -concentration patterns computed during a single
forcing period. The collision regions between the three target patterns
appear as dark bands. The spiral defect has the lowest V values
and is found around the coordinates (x,y) = (40,45) (red disk). The
defect reached this position along a trajectory shown as a continuous
(yellow) line. (b) Corresponding time evolution of the x (red/dark
gray) and y (green/light gray) coordinates of the defect tip. The three
target patterns have identical frequencies and create a forcing period
of Tforce = 7.0 (Tforce/Tspiral = 0.59).
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The individual pacemakers are located in the upper left corner,
the lower left corner, and at the midpoint of the right system
boundary. The defect trajectory is superposed as a continuous
line. It shows that the defect first moves out of the wave field
created by the lower left pacemaker, then travels rightward
under the influence of the two target patterns in the left half of
the system, and finally stops due to interactions with all three
wave fields. In Fig. 6(a) the collision lines are darker (blue)
stripes and the final location of the defect can be discerned
from a disk shaped (red) region that corresponds to the spiral
core. The temporal evolution of the Cartesian coordinates of
the defect in Fig. 6(b) indicate that this position is stationary.

IV. EXPERIMENTAL METHODS

In the second half of this article we show that the
defect dynamics found in numerical simulations can also be
observed in experimental systems. Our specific experiments
use the chemical Belousov-Zhabotinsky (BZ) reaction, which
is a frequently studied excitable reaction-diffusion system
[31,32]. The BZ reaction involves the bromination of an
organic compound (here malonic acid) by bromate in acidic
solution. Its key step is the autocatalytic, and hence nonlinear,
production of bromous acid. We prepare the BZ reaction with
the catalyst ferroin/ferriin. The latter redox couple undergoes
striking color differences during each excitation cycle, which
allows for the optical detection of the excitation waves.

Our experiments employ thin layers of the reaction
media that are either contained in a gel or liquid phase.
In either case the layer height is 2.0 mm. We found no
evidence of undesired hydrodynamic flows. The experiments
with single forcing patterns were carried out in agarose
gel (0.8% weight/volume). Disregarding the bromination of
malonic acid, the initial reactant concentrations are [H2SO4] =
0.16 mol/l, [NaBrO3] = 0.04 mol/l, [malonic acid] = 0.04
mol/l, and [Fe(phen)3SO4] = 0.5 mmol/l (concentration set
I). In the case of multiple forcing patterns and to decrease
the time of the experiments, we used an alternative compo-
sition which we refer to as concentration set II. The initial
reactant concentrations in liquid phase are [H2SO4] = 0.41
mol/l, [NaBrO3] = 0.3 mol/l, [malonic acid] = 0.2 mol/l, and
[Fe(phen)3SO4] = 3.75 mmol/l. The solutions are prepared in
nanopure water (18 M� cm) and all experiments are carried
out at room temperature.

The chemical waves in this system are monitored based on
their spatiotemporal transmittance patterns. For this purpose
the sample is illuminated with white light (Fiber-Lite PL-800)
and the transmitted light is detected by a charge-coupled device
camera mounted over the reaction layer. This method utilizes
the color difference between the chemically reduced rest state
(red) and the oxidized, excited state (blue). The position of
spiral defects are measured from sequences of video frames
by locating the point of highest curvature at the open wave
ends.

For the creation of high-frequency wave patterns we modify
the system dynamics in small regions of the active BZ layer.
This modification is accomplished by injection of a small
drop (∼1 μl) of sulfuric acid (1 mol/l) or BZ solution with
a higher bromate concentration (0.3 mol/l). The latter (former)
perturbation is used for gel (liquid) systems. Typically the

affected regions develop spiral waves. These spirals have a
higher frequency than the spirals and target patterns in the
unaffected surroundings and hence quickly create a large wave
pattern. Within this pattern we create defect pairs by inserting
a microscope cover slip parallel to the wave fronts. This thin
piece of glass is a physical boundary and, hence, impenetrable
to the traveling waves. After blocking at least one wave front,
the obstacle is removed, which nucleates the desired defect
pair. Notice that the distance between the studied defects and
the injection site is at least 1 cm. Since our experiments last
less than 1 h, the system around the defect is not affected by
diffusion of injected solution but only by the altered frequency
of chemical waves generated in this region.

V. EXPERIMENTAL RESULTS

Figure 7 shows a sequence of snapshots recorded for a
typical example of defect drift in the BZ system. The reaction
is carried out in a thin gel layer and for the concentrations
specified in set I. The bright bands correspond to regions
in which the catalyst is predominantly oxidized. The actual
excitation pulse is located at the leading edge of these
bands (not measured) where the concentration of the activator
bromous acid is expected to be high. In the wake of the bright
bands, the system is refractory due to a high concentration
of the inhibitor bromide. The arrow in Fig. 7(a) indicates the
initial position of the defect. The drift trajectory is superposed
as white curves that extend from the defect’s initial location
to its position in the given image frame. The forcing waves
have a period of Tforce = 186 s while free spirals in this system
have a period of Tfree = 325 s (Tforce/Tfree = 0.57). The upward
traveling waves have a low front curvature and force the defect
in a nearly constant direction. Notice that the defect in Fig. 7
rotates in counterclockwise direction.

(a) (b)

(c) (d)

FIG. 7. Defect drift in a thin layer of the Belousov-Zhabotinsky
system. The time between subsequent snapshots is 940 s. The forcing
waves travel in upward direction. The frequency ratio between the
forcing waves and the unperturbed spiral wave is 0.57. The defect
drifts toward the upper right corner tracing the white trajectories
superposed on frames (b)-(d). The white arrow in (a) marks the initial
position of the defect. The initial reactant concentrations are listed in
the text as set I. The field of view is 2.44 × 1.83 cm2.
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FIG. 8. (Color online) Drift velocity of spiral defects in single,
near-planar wave trains as a function of the forcing period. The values
of vx (black open circles) describe the velocity component along the
forcing wave fronts, while vy (red squares) is the velocity component
perpendicular to the forcing waves. The experiments were carried out
for reactant concentrations described by set I.

As expected our experiments show that the drift velocity
and the drift direction depend strongly on the period of the
forcing wave train. The corresponding results are summarized
in Fig. 8. The data are obtained from defects drifting in wave
trains that have low front curvature and constant periods.
Notice that the rotation period of the free unperturbed spiral
equals Tspiral = 325 s. We successfully varied the forcing period
down to approximately 170 s. Attempts to trigger waves with
even shorter periods failed and usually resulted in a “thinning”
of the wave train by self-elimination of every second wave
pulse. Notice that the existence of such a high-frequency limit
is typical for excitation waves and related to their absolute
refractory zone [33]. Furthermore, Fig. 8 shows that the sign
of the velocity component vy changes once over the range of
accessible forcing periods. As in Fig. 2(a), negative values of
vy (red squares) indicate a defect drift against the forcing wave
motion. The vx component (black circles in Fig. 8), however,
changes sign twice in the range of possible forcing periods.
The latter finding is in good qualitative agreement with the
numerical results in Fig. 2.

In order to understand defect dynamics in the wave field of
multiple target patterns, we performed experiments with more
than one region of high-frequency wave generation. These
regions are created by careful injection of sulfuric acid into
several, well separated sites of the active system. Moreover, all
of the following experiments employ a BZ medium with initial
concentrations specified by the parameter set II. The rotation
period of unperturbed spiral waves in this system is 18.0 s. For
this excitable medium Fig. 9 shows an example of defect drift
under the influence of two forcing patterns. The patterns have
an almost identical frequency of 10.0 s with rightward moving
(three to five o’clock direction) waves in the left portion of
the images and leftward traveling waves in the right half. In
Fig. 9(a) a single defect is located in the upper left portion
of the image [white arrow in Fig. 9(a)]. Its sense of rotation

(a) (b)

(c) (d)

FIG. 9. Defect drift in the wave field of two pacemakers. The
forcing waves have a period of Tforce = 10 s. The arrow in (a) indicates
the initial position of the defect. The superposed white curves (b)–(d)
show the drift trajectory. Images are recorded at an interval of 122 s.
Rotation period of the unperturbed spiral: Tspiral = 18 s. Field of
view 6.2 × 4.6 mm2. The experiments were carried out for reactant
concentrations described by set II.

is clockwise. During the course of about 2 min the defect is
pushed into the collision zone of the two high-frequency wave
patterns. In Figs. 9(b)– 9(d) the drift trajectory is superposed
as white curves. Notice that each curve extends only up to the
location of defect in the corresponding image. Once the defect
has reached the collision zone, its drift velocity and direction
change. As shown in Figs. 9(c) and 9(d) the defect continues
its motion within the collision zone in a downward direction.
This direction is marked by increasing angles between the
colliding, high-frequency fronts. The drift scenario in Fig. 9
is therefore comparable to the simulated outward motion in
Figs. 4(c) and 4(d).

Our results have shown that longer forcing periods can
cause a sign change in the vx component of the drift velocity
that results in a reversed drift direction of defects perturbed
by two curved wave trains [see Figs. 4(a) and 4(b)]. This
situation is illustrated in Fig. 10 where the forcing period
is approximately 12 s and the sign of the vx component
reversed with respect to Fig. 9. Notice that the defect is rotating
counterclockwise. The image sequence in Fig. 10 shows that
the defect [marked by a white arrow in (a)] is pushed into the
collision zone where it abruptly changes direction. In contrast
to Fig. 9, the defect then moves into a region of decreasing
angles between the colliding fronts.

We also attempted to perform experiments in which the
two forcing wave trains are planar. Based on our simulations
(see Fig. 3), this situation is expected to stop defect drift in the
collision zone. While it is very difficult to prepare this scenario
in experiments, we did obtain a few examples that indeed
show this behavior but typically in complicated wave patterns.
One of these experiments is illustrated in the supplementary
information file [34]. The latter also contains data on defect
dynamics in the wave field of two wave trains that differ in
period. Under such conditions the defect is initially pushed
into the collision zone. Due to the frequency differences this
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(a) (b)

(c) (d)

FIG. 10. Defect drift in the wave field of two pacemakers. The
forcing waves have a period of Tforce = 12 s. The arrow in (a) indicates
the initial position of the defect. The superposed white curves (b)–(d)
show the drift trajectory. Images are recorded at an interval of 200 s.
Rotation period of the unperturbed spiral: Tspiral = 18 s. Field of
view 6.7 × 5.0 mm2. The experiments were carried out for reactant
concentrations described by set II.

zone is not stationary but shifts toward the lower frequency
side and the defect follows this motion.

Lastly we report defect drift in systems with three high-
frequency wave patterns of approximately equal period.
Figure 11(a) shows the trajectory of a defect under such a
condition, which consists of (i) a long, slightly arched initial
part, (ii) a sharp right turn, and (iii) an essentially stationary
orbit (preceded by a small downward correction). These stages
correspond to (i) drift in a single (slightly curved) wave train,
(ii) motion along the boundary of two wave patterns, and (iii)
stable rotation at the “triple point” of the three wave patterns.
The latter location is the common end point of the collision
lines between the three pairs of wave trains. The rotation
pattern of the defect at this point is unusual in the sense that
each rotation cycle involves three wave-tip collisions. This
feature is illustrated in Fig. 11(b) which is constructed by
image addition of three snapshots recorded at time intervals
of approximately one third of the forcing period. The defect
can be discerned as a triskelion (three-armed “swastika”) in
the midregion of the image. Notice that the two freely rotating
spiral waves in the lower left corner have a strikingly different
structure.

In summary, we have studied the motion of spiral defects in
single and multiple wave trains. These defects form if spirals
are exposed to wave patterns with frequencies higher than the
rotation frequency of the vortex. The qualitative characteristics
of the defect motion are widely independent of the specific
features of the excitable system. They can be summarized as
follows: (i) in planar wave trains the defect moves with a
constant velocity along a straight trajectory. The speed and
direction varies with the frequency of the wave train. Defects
can be attracted into the nucleation region of the perturbing
wave train (vy < 0) but the specific range of drift directions
depends on the system. (ii) Defect motion in single, circular
wave trains traces logarithmic spirals. Their chirality depends
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FIG. 11. Defect dynamics under the influence of three forcing
wave patterns. (a) Trajectory of the spiral defect. (b) Superposition of
three snapshots obtained from the same experiment after the defect
reached its final position. The time between each snapshot corre-
sponds to one third of the forcing period. The arrow in (b) indicates
the final position of the defect. Field of view 7.0 × 7.9 mm2. The
experiments were carried out for reactant concentrations described
by set II.

on the rotation sense of the defect and also on the sign of
the lateral drift velocity vx . (iii) Defects in systems with two
forcing patterns move into the collision zone as long as vy > 0.
If the forcing waves are planar, the defect stops close to the
collision line. For curved waves, however, it changes direction
and moves along the collision line. Depending on the forcing
period and its position, the drift occurs in the direction of
either increasing or decreasing angles between the colliding
fronts. In the latter case the defect settles at a point close to the
axis that connects the two high-frequency pacemakers. (iv) In
systems with three (or more) wave patterns, the global wave
pattern is partitioned into a corresponding number of basins.
In each basin, all points experience excitation from waves that
nucleated from the same pacemaker. The boundaries of the
basins define a network of collision lines. Defects in such
systems can move to the triple points of this network, which
then are stable attractors.

A potentially interesting complication arises if the system
has several defects. In this situation one of the defects will
reach the original collision line first and subsequently alter the
shape of the later. This deformation of the collision line can
be discerned in Fig. 4(a) where the two initially symmetric
collision-induced wave cusps (not shown in the figure) are
now offset in vertical direction by about 10 space units. If
there is a second defect present in the system, it will drift
along this new collision line. Additional work is needed to
describe and analyze the resulting dynamics and asymptotic
defect locations.

VI. CONCLUSIONS

Despite this current limitation, wave forcing offers several
tools for the positioning of spiral waves in specific regions of an
excitable system. These procedures are unique in the sense that
they can be implemented from a small number of perturbation
sites located at the boundaries of the system. For instance, if
the goal is the annihilation of a vortex at the system boundary, it
is sufficient to create a target pattern from a single point on the
system boundary with a frequency that gives rise to negative
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y component of the drift velocity. Moreover, two trigger points
are sufficient to attract the spiral to any desired line. Within the
appropriate range of forcing frequencies, two and three trigger
points allow the placement of the spiral at a specific point.
We believe that such remote-positioning protocols are also the
most efficient strategy for changing the location of vortices
in three-dimensional systems. Notice that in 3D most global
perturbations (e.g., heat and light) are affected by undesired
gradients and/or temporal delays. It will hence be interesting
to extend our studies to systems such as the three-dimensional

BZ reaction or three-dimensional samples of cardiac tissue
[3,35]. However, one can expect that the response of vortices
(scroll waves) in these systems is more complicated as spiral
rotation occurs around one-dimensional filaments rather than
the pseudo-one-dimensional core region of the vortex.
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