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The evolution of an excitation front propagating on a nonuniformly curved surface is considered within
the framework of a kinematical model of its motion. For the case of a surface with a periodically modu-
lated curvature an exact solution of the front shape is obtained under the assumption of sufficiently small
surface deformation. The results of the theoretical consideration are compared with the experimental
data obtained with a modified Belousov-Zhabotinsky reaction in a thin nonuniformly curved layer.
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Excitation fronts and waves are observed in many bio-
logical systems such as cardiac muscle tissue [1] or aggre-
gating slime mold cells [2], physical systems such as CO
oxidation on platinum surfaces [3], and chemical systems
such as the Belousov-Zhabotinsky (BZ) reaction [4–6].
The properties of these waves differ considerably from the
acoustic or electromagnetic waves in traditional conserva-
tive systems. This difference is due to the active local
dynamics of excitable media.

The investigation of spatiotemporal structures in ex-
citable media has attracted increasing interest during the
last decades. So far, most of the theoretical and experi-
mental studies of two-dimensional excitable systems were
dealing with homogeneous and nonhomogeneous distribu-
tion of different control parameters in planar geometries
[7–9]. In natural systems, however, many excitable reac-
tions occur on curved surfaces, e.g., on the heart muscle
[1] or in the phenomenon of spreading depression waves
in chicken retina [10]. Curvature can essentially affect the
wave processes, as first discussed in [11] and later investi-
gated in [12–18].

In this Letter, we report how an excitation front evolves
on a nonuniformly curved surface. As a generic case of
a curvature geometry we start to consider a periodically
modulated surface. The role of such a perturbation is
investigated analytically, numerically, and by experimental
observations.

In order to simulate wave propagation through an
excitable medium a general two-component reaction-
diffusion system is widely used:

≠u
≠t

� Du=2u 1 F�u, y� ,

≠y

≠t
� Dy=2y 1 eG�u, y� ,

(1)

where the activator �u� and the inhibitor �y� may repre-
sent concentrations of chemical species, temperature, or
electric potential, etc. The nonlinear functions F�u, y� and
G�u, y� describe the excitable local kinetics of the system.
The transport processes in this medium are due to diffu-
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sion of activator and inhibitor with diffusion constants Du

and Dy , respectively.
It is known that the propagation velocity V of an excita-

tion front on a plane depends linearly on its local curvature
K [19,20] according to

V � V0 2 DK . (2)

V0 is the velocity of a planar wave and the slope D is ap-
proximately equal to the diffusion constant Du. A gener-
alization of this equation for a curved surface results in the
same equation, but the value K in this case is the geodetic
curvature of the front. Note that the geodetic curvature of
a curve on an arbitrary surface is the curvature of its pro-
jection on the tangential plane. The geodetic curvature K
given as a function of the arc length K � K�l, t� specifies
the shape of the front on a surface at a given time instant,
like a natural equation of a curve does on a plane.

It has been shown [10,13] that the evolution of the front
shape K�l, t� obeys the following integrodifferential equa-
tion:
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1
≠2V
≠l2 � 2GV ,

(3)

where G is the local Gaussian curvature of the surface. If
the shape of the surface is written as

z � f�x, y� , (4)

the value of the Gaussian curvature can be represented by
the following expression:

G�x, y� �
fxxfyy 2 f2

xy

�1 1 f2
x 1 f2

y �2 . (5)

Let us consider the evolution of an initially flat front on a
surface with slightly modulated Gaussian curvature:

z � A sin�bx� sin�by� . (6)

This surface represents the easiest periodically nonuni-
formly curved surface. An example of such a surface is
shown in Fig. 1. The condition of a small modulation can
be written as Ab ø 1. Under this condition the Gaussian
curvature of the surface (6) writes
© 2000 The American Physical Society
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FIG. 1. Excitation front (thick solid line) propagating on a
nonuniformly curved surface [Eq. (6)] with A � 1.0 and b �
0.7. The solid line in the upper part represents the projection
of the front on a plane z � const. The diamonds and crosses
indicate local maxima and minima of the nonuniformly curved
surface, respectively.

G�x, y� � A2b4���sin2�bx� sin2�by� 2 cos2�bx� cos2�by����

� 2
1
2

A2b4���cos�2bx� cos�2by���� . (7)

It follows from (3) that a modulation of the Gauss-
ian curvature will induce deformations of the initially flat
front. In a linear approximation these deformations can be
considered as sufficiently small: K ø b ø V0�D. Keep-
ing only linear terms in K , the basic kinematical Eq. (3)
can be reduced to the following form:

≠K
≠t

2 D
≠2K
≠l2 � 2GV0 . (8)

Let a be the angle between the front and the x axis. In a
planar region the wave propagates with V0. On a surface
with small deformations, the front should propagate with
velocity V � V0. In a comoving coordinate system with
a constant velocity, the Gaussian curvature along the front
can be expressed as a function of the arc length l and time
t according to

G�l, t� � 2G0���cos�b1l 2 v1t� 1 cos�b2l 1 v2t���� ,
(9)

where G0 � A2b4�2, b1 � 2b cosa, v1 � 2bV0 sina,
b2 � 2b sina, v2 � 2bV0 cosa. This expression is
substituted into (8), which in this case can be solved
analytically by use of Fourier transform techniques. One
obtains the expression

K �
A2b4V0

2

∑
cos�2bl cosa 2 2bV0t sina 1 u1�
�16D2b4 cos4a 1 4b2V 2

0 sin2a�1�2

1
cos�2bl sina 1 2bV0t cosa 2 u1�
�16D2b4 sin4a 1 4b2V 2

0 cos2a�1�2

∏
,

(10)

with tanu1 � V0 sina��2Db cos2a� and tanu2 �
V0 cosa��2Db sin2a�.
The evolution of the wave shape K�l, t� is described
as a superposition of two waves propagating in opposite
directions. This interplay strongly depends on the angle a,
as can be illustrated by considering two particular cases.

Let us choose a � 0, which corresponds to the wave
propagating along the y axis. Then we have b1 � 2b,
v1 � 0, b2 � 0, v2 � 2bV0, u1 � 0, u2 � p�2, and
the general solution (10) reduces to

K �
A2b2V0

8D

∑
cos�2bl� 1

2bD
V0

sin�2bV0t�
∏

. (11)

One term in this equation describes spatial and the other
one temporal oscillations of the front shape. By averag-
ing the temporal oscillations, a function K�l� is obtained,
which has a period twice shorter than the spatial period
of the surface (6) in x direction. Note that if the estimate
2bD�V0 ø 1 is valid, the amplitude of the temporal os-
cillations around this average shape remains small. All
curves in Fig. 2(a) are superimposed at the last position of
the front to show the oscillations of the front shape.

For a front propagating in diagonal direction (e.g., a �
p�4), the general solution is characterized by the follow-
ing values of the coefficients: b1 � b2 �

p
2 b, v1 �

v2 �
p

2 bV0, tanQ1 � tanQ2 � V0��
p

2 Db�. Now the
solution can be written as

K �
A2b3V0

�4D2b2 1 2V 2
0 �1�2

cos�b1l� cos�v1t 2 Q1� . (12)

This expression can be interpreted as a “standing wave”
in that some ripples appear periodically on the initially flat
front at some well-determined places as shown in Fig. 2(b).
The spatial period of the ripples is larger than in the pre-
vious case, and their amplitude should be considerably
smaller, if the inequality 2bD�V0 ø 1 holds.

A novel experimental methodology has been developed
to allow the experimental investigation of front propa-
gation on nonuniformly curved surfaces. A computer

FIG. 2. Temporal sequence of the momentary position and
form of the wave front with Dt � 40 s (thin solid lines) cor-
responding to solutions (11) and (12) of the kinematical Eq. (8)
obtained for (a) wave propagating along the y axis �a � 0� and
(b) in diagonal direction �a � p�4� with V0 � 0.038 mm�s
and D � 1.9 3 1023 mm2�s. These curves are superimposed
at the last position of the front to show the deformations of the
front shape. The diamonds and crosses indicate local maxima
and minima of the nonuniformly curved surface, respectively.
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numerical control (CNC) machine is used to manufacture
pairs of complementary Plexiglas molds that, once put to-
gether, create a thin hollow space, which can accommo-
date a chemical reaction system. This quadratic space has
a side length of 61.50 mm and a height of 0.40 mm. Cen-
tered within this square is a �31.50 3 31.50� mm2 area
that defines the nonuniformly curved surface. For the ex-
periments presented here, the surface is given by the two
functions h1�x, y� and h2�x0, y0� describing the surface un-
dulations of the two Plexiglas molds within this area:

h1�x, y� � A sin�bx� sin�by� ,

h2�x0, y0� � A sin�bx0� sin�by0� 1 d��Abx� ,
(13)

with

x0 � x 2 �d cos�bx� sin�by���x ,

y0 � y 2 �d sin�bx� cos�by���x ,

x � �1�2 2 �1�2� cos�2bx� cos�2by� 1 1��Ab�2�1�2,

FIG. 3. (a) Superposition of 31 experimental snapshots of an
excitation front propagating in a curved Belousov-Zhabotinsky
system. The front travels in a horizontal direction and under-
goes systematic front deformations. The thick line indicates the
boundary of the nonuniformly curved surface. Time between
snapshots: Dt � 20 s. Image size: �28 3 22� mm2. (b) Defor-
mation map obtained from the experiment shown in (a). Dark
(bright) areas correspond to regions in which the arrival of the
front is delayed (early) with respect to the time expected for a
planar front. Local values within the map were calculated from
the distance between the actual front and a median line. This
calculation was repeated successively at 1 s intervals for 600 s.
Image area: �26 3 22� mm2.
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and A � 1.00 mm, b � 2p�9.00 mm21. This choice of
functions establishes a constant distance d � 0.40 mm
between the two surfaces in normal direction.

The hollow space created by the molds is filled with
a ferroin-catalyzed Belousov-Zhabotinsky solution. Mal-
onic acid, the classical organic substrate of this reaction,
is replaced by 1,4-cyclohexanedione (CHD) to prevent
the formation of undesired CO2 bubbles [21]. Excitable
behavior is observed for the following set of initial
concentrations, which have been used in this study:
�CHD� � 0.12 M, �NaBrO3� � 0.08 M, �H2SO4� �
1.50 M, and �ferroin� � 0.6 mM. The waves were initi-
ated from a straight silver wire that was placed between
the molds. Note that the reaction solution was filled
into the mold approximately 50 min after preparation
to minimize the number of spontaneous pacemakers.
Wave propagation was detected with a charge-coupled-
device (CCD) camera and the resulting video signal
was digitized using a PC-based image-acquisition board
�640 3 480 pixels� for further analysis.

Within the framework of the presented kinematical the-
ory, experiments with initially either parallel �a � 0� or
diagonal �a � p�4� planar waves were analyzed explic-
itly and are presented in Figs. 3 and 4.

Figure 3(a) shows consecutive snapshots of the front
of an initially planar excitation wave propagating in hori-
zontal direction from the left to the right-hand side across
the surface (time interval between snapshots, 20.0 s). The
thick line indicates the boundary between the planar (left)
and the nonuniformly curved region (right). The position
of its local maxima and minima are represented by dia-
monds and crosses, respectively. The front shows signifi-
cant deviations from the initially planar geometry.

The part of the waves which propagates over the nodes
is always leading, whereas the front always lags behind at
the location of the extrema. The experimental data reveal
the main phenomena predicted by Eq. (11) and shown in

FIG. 4. Superposition of 25 experimental snapshots of an ex-
citation front propagating in diagonal direction across a curved
Belousov-Zhabotinsky system. Thick lines and spots indicate
the boundary and the local extrema of the nonuniformly curved
surface, respectively. Time between snapshots: Dt � 20 s. Im-
age size: �26 3 20� mm2.
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Fig. 2(a). This particular finding is further illustrated in
Fig. 3(b). Since the long scale geometry of the evolving
front remains planar, we analyzed its periodic deforma-
tions by calculating the shortest distance d between every
point of the actual front and its medium value. The value
of d is negative, if the local front segment is retarded with
respect to the fitted line and positive in the opposite case.
The gray levels in Fig. 3(b) represent the values of d as
obtained from 600 consecutive snapshots of the propagat-
ing front. They vary between approximately 20.52 and
0.47 mm. The figure reveals five dark stripes in the hori-
zontal direction, each centered along a line which connects
neighboring extrema of the surface. These stripes are sepa-
rated by bright regions, which correspond to areas in which
the front has a convex shape when moving across the nodes
of the surface.

The deformations for a wave propagating in diagonal
direction across the surface are shown in Fig. 4 with 31
consecutive front lines, separated each by a time interval
of 20.0 s. In this case the deformations are smaller than in
Fig. 3(a). This is in good agreement with the prediction of
Eq. (12) as discussed above.

The theoretical and experimental studies performed in
this Letter describe wave evolution on a periodically modu-
lated curved surface as a complicated spatiotemporal pro-
cess. However, for the particular cases of a � 0 and
a � p�4 two unexpected regimes are observed which al-
low a rather simple description [see Eqs. (11) and (12)].
The close correspondence between the theoretical and ex-
perimental results demonstrates that some generic features
of the wave dynamics on nonuniformly curved surfaces
have been discovered. The experimental method devel-
oped here can be applied to construct quite different sur-
face shapes (e.g., semispheres, paraboloids), which could
be interesting for further studies on curvature effects. It
should be emphasized that a similar theoretical approach
can be also applied to a variety of systems, in which ve-
locity changes arise from sources other that curvature, i.e.,
photochemical perturbations, temperature and concentra-
tion variations, or ordered heterogeneities of the active
medium [22–24].
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