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Excitable Front Geometry in Reaction-Diffusion Systems with Anomalous Dispersion
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Two-dimensional excitable systems with anomalous dispersion provide a discrete set of interpulse
distances for the stable propagation of planar wave trains. Numerical simulations show that the trailing
front of a pulse pair can undergo transitions between these stable distances. In response to localized
perturbations, the trailing front converges towards one of numerous, sigmoidal shapes. Their transition
segments move at constant speeds and can collide and fuse with each other. A complementing kinematic
analysis of the front dynamics yields a reaction-diffusion-like equation.
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Pattern formation in reaction-diffusion (RD) systems is
attracting considerable interest due to its interdisciplin-
ary importance which spans through the entire spectrum
of science and engineering [1]. The foremost challenge
is to identify steady-state solutions and to derive simple
laws that describe their geometrical and dynamic features.
In excitable RD media, these solutions include stationary
Turing patterns, constant speed and shape pulses, as well
as rotating spiral waves [1]. These dissipative structures
are observed in a variety of experiments on gas discharge
systems, chemical reactions, and living cells [2].

This Letter describes a novel type of steady-state solu-
tion which is characteristic for excitable RD systems with
anomalous dispersion relations. For planar fronts the dis-
persion relation denotes the speed (c) of an infinite wave
train as a function of the distance between neighboring
pulses (l) [3]. Most of the literature has been dedicated to
systems with normal dispersion where c�l� is a monotonic
function that increases with l to asymptotically approach
a maximal value which equals the velocity of a solitary
pulse c0 [4]. However, the dispersion relation of excitable
systems, in which the steady state is a stable focus, shows
either a single overshoot or damped oscillations around c0
(see Fig. 1a) [5,6]. In the latter case, a discrete spectrum
of wavelengths li exists with c�li� � c0. At these dis-
tances, a leading pulse and a trailing pulse can travel at the
same speed. The stability criterion for bound pulse pairs is
dc�li ��dl . 0 [7], which implies that, according to the
schematic example in Fig. 1a, stable pulse doublets have
distances of l0, l2, or l4.

Experimental studies revealed the existence of anoma-
lous dispersion in a Belousov-Zhabotinsky reaction [8], in
the reduction of NO with CO on Pt(100) surfaces [9], and
possibly in the aggregation of a cellular slime mold [10].
Furthermore, oscillatory dispersion relations are found in
biomedical systems where they influence the propagation
of action potentials in cardiac tissue and the nonlinear dy-
namics of single cardiac cells [11,12]. In this context, the
anomaly is often referred to as supernormal excitability.
The impact of anomalous dispersion on pattern formation
in two spatial dimensions is only sparsely studied [5]. This
lack of systematic investigations is in sharp contrast to the
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highly interesting dynamics one expects to find in this class
of excitable systems as we will demonstrate here for the
fairly benign example of nonplanar trailing fronts that are
frustrated by the existence of multiple stable distances.

Numerical simulations are carried out on the basis of the
FitzHugh-Nagumo (FHN) equations [13] which are fre-
quently employed as a generic model for pattern formation
in excitable RD systems and neuronal networks:
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The dimensionless model involves a fast variable
A�x, y, t� and a slow variable B�x, y, t�, where x, y, and
t denote the spatial coordinates and time, respectively.
The parameters are chosen to generate excitable point
dynamics around a unique stable focus, which in turn give
rise to damped oscillations in the dispersion relation [5].

Figure 2 illustrates the dynamics of a nonplanar excita-
tion front (upper white band) traveling in the wake of a
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FIG. 1. Schematic drawings of (a) an anomalous dispersion re-
lation with damped oscillations and (b) a defectlike deformation
of an excitation front (thick line) that follows a planar front po-
sitioned at y � 0.
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FIG. 2. Four snapshots of a pair of excitation fronts (white
bands) in a moving coordinate system �x, y 2 c0t�. The parame-
ters e, b, g, and D are 0.3, 0.7, 0.5, and 1.0, respectively.
The numerical integration is carried out with a time step of
Dt � 0.01 on a grid of 400 3 100 points spaced at Dx � 0.5.

planar pulse (lower white band). The consecutive snap-
shots 2(a)–2(d) are taken in a coordinate system y 2

c0t that moves with the speed of the leading front in
the 2y direction. The initial geometry of the trailing
pulse is chosen in a way that a small portion of its front
is spaced from the predecessor at a distance l0 while
the spacing of the longer, right portion is l2. Both of
these distances are stable with respect to perfectly pla-
nar fronts but the connecting, curved segment extends
through an area in which the local pulse speed varies
around c0 (compare Fig. 1b). Our simulations reveal that
the trailing front quickly establishes a steady-state shape
that propagates with constant speed in the x direction.
Most of the front is locked into one of the stable posi-
tions, and the curved transition zone is, hence, well lo-
calized. The direction of its motion leads to an expansion
of the l0 segment at the expense of the l2 branch. We will
therefore denote this structure as the 1�l2 ! l0� transi-
tion where the plus sign indicates the direction of the trav-
eling transition zone with respect to the x axis. Attempts
to initiate the reverse transition from l0 to l2 were always
unsuccessful. Note that we found no indications for a de-
pendence between the features of the transition shown in
Fig. 2 and the detailed shape of the initial perturbation.
However, the amplitude and the width of the initial defor-
mation has to exceed critical values in order to nucleate the
traveling structure. All of these findings suggest that the
moving front deformation shown in Fig. 2 is indeed a novel
steady-state solution of excitable RD systems revealing in-
triguing similarities to the nucleation and propagation of
fronts in bistable systems [14].

The existence of several stable distances in the wake
of the leading pulse allows the formation of additional
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transitions along the trailing front. Figure 3a presents an
example of a traveling 1�l4 ! l2� transition. The corre-
sponding transition zone is smoother than the one shown
in Fig. 2 and moves at a slower speed. This difference
in propagation velocities creates the possibility for colli-
sions between �l4 ! l2� and �l2 ! l0� transitions as il-
lustrated by the image sequence in Fig. 3. In the collision a
constant-shape 1�l4 ! l0� pattern is formed that contin-
ues to propagate towards the right (Fig. 4d). The velocity
of this newly formed structure shows no significant differ-
ence from that of the �l2 ! l0� transition.

According to the number of stable distances N on the
dispersion curve, it is possible to observe N2 2 N differ-
ent, nontrivial steady-state solutions. The resulting, large
number of allowed (i.e., topologically possible) collisions
can be categorized into two main classes. A collision oc-
curs either by front-to-back fusion, as shown in Fig. 3, or
in front-to-front encounters that lead to complete or partial
annihilation. An example for the latter case is shown in the
image sequence of Fig. 4. Here a 1�l4 ! l0� transition
collides with a 2�l4 ! l2� zone giving birth to a right-
wards traveling 1�l2 ! l0� structure (Fig. 4d) that will
eventually generate a planar front at the stable distance l0

(not shown).
In the following, we present a simple kinematic analysis

of the above front dynamics which reproduces the essen-
tial findings of our simulations and explains the surprising
similarity between the steady evolution of the front shape
and the constant-speed propagation of fronts in multistable
systems. The position yL of the leading planar front is
described by yL�t� � c0t. It generates a spatially modu-
lated, steadily translating velocity field that affects the evo-
lution of the trailing front y�x, t�. The local curvature K of
the trailing front y�x, t� is essential for the formation of a
steady-state solution. The curvature influences the normal
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FIG. 3. Front-to-back collision of a 1�l2 ! l0� with a
1�l4 ! l2� transition. This type of collision generates a
1�l4 ! l0� transition. Numerical parameters as in Fig. 2.
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FIG. 4. Front-to-front collision of a 1�l4 ! l0� with a
2�l4 ! l2� transition. This collision results in the formation
of a 1�l2 ! l0� structure. Numerical parameters as in Fig. 2.

front velocity N according to the eikonal equation, which,
with respect to a planar pulse, yields increased (decreased)
speeds for concave (convex) front segments [15]. This de-
pendence stabilizes the trailing pulse which experiences a
continuous deformation from the modulated velocity field
and can be written as
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p

1 1 �≠y�≠x�2 times the following vector is the
unit vector in normal direction. Note that c is the position-
dependent wave speed of a planar front (compare Fig. 1).
From the equations

≠y�≠t � Ny 2 Nx≠y�≠x , (4)
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one readily obtains the kinematic equation
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where j �
p

1 1 �≠y�≠x�2 $ 1 is the derivative of the
arclength with respect to x and y equals y 2 c0t. The main
structure of Eq. (6) is reminiscent of a one-dimensional
RD system [14]. However, j can locally amplify the os-
cillatory “reaction term” c� y� and weaken the stabilizing
diffusion-like term in (6). For oscillatory dispersion
relations, the spatially homogeneous steady states of
Eq. (6) correspond to planar waves (j � 1) with y�x� �
l0, l2, . . . . For systems with normal dispersion, the
equation still holds but yields no stationary solutions.

Figure 5 shows numerical results obtained on the ba-
sis of Eq. (6) for the simple model dispersion relation
c� y� � c0 1 c1 sin�ky�. In this example, the wave vector
k is set to 2p�4.0 and homogeneous steady states are found
accordingly at y � 2.0, 6.0, 10.0, . . . . The bold curve in
228302-3
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FIG. 5. Front evolution obtained by numerical integration of
Eq. (6) for a sinusoidal dispersion relation without damping.
The thick line indicates the initial condition which involves
three localized perturbations (a)–(c) of the stationary solution
y � 6.0. Only perturbation (a) succeeds in initiating a pair of
traveling transition zones. Parameters: c0 � 22.0, c1 � 0.5,
k � 2p�4.0, D � 1.0.

Fig. 5 represents the initial shape of y�x� which is a straight
line at y � 6.0 perturbed by three bell-shaped curves [la-
beled (a)–(c)] of different amplitude. The 11 additional
curves are illustrating the consecutive front evolution. The
perturbation 5(a) extends into the band of high propaga-
tion speeds between y � 2 and 4. In the course of time,
this leading segment decreases its distance from the at-
tractive position at y � 2, and two propagating �l2 ! l0�
transition fronts are formed that travel at a constant speed
in opposite directions. The second perturbation 5(b) has a
slightly smaller amplitude. Again, this perturbation is large
enough to extend the initial front into the band of increased
propagation speeds, but, in this case, the front reclines
towards larger y values and no defect nucleation is ob-
served. This behavior is caused by the negative curvature
of the convex, leading segment, which in this example is
sufficiently strong to overcompensate the elevated speeds
below y � 4.0. The third perturbation 5(c) deforms the
planar front in the opposite direction and collapses rapidly
into the stable y � 6.0 state.

The overall dynamics represented in Fig. 5 are in good
qualitative agreement with the behavior of fronts in our
FHN simulations. In the framework of the simple dis-
persion relation used for Fig. 5, one finds that the propa-
gation velocity of the defects increases with increasing
values of the modulation amplitude c1. This increase in
speed coincides with a decrease of the defect’s half-width.
A major difference, however, is that the defect speed is
independent from the specific transition because the os-
cillations of the dispersion relations are not damped. A
straightforward modification of our earlier dispersion rela-
tion is c� y� � c0 1 c1 sin�ky� exp�2ky�. Figure 6 shows
a time-space plot obtained by numerical integration of
Eq. (6) using the latter velocity expression. In this plot,
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FIG. 6. Time-space plot obtained on the basis of Eq. (6) for a
dispersion relation with exponentially damped sinusoidal oscil-
lations. The local gray levels represent the corresponding value
of y�x, t� with black indicating y � l0. Parameters as in Fig. 5
and k � 0.3.

different gray levels indicate different distance between
the leading and trailing fronts. The dominant halftones
represent y � l0 (black), l2 (gray), and l4 (white). For
this example, an initial state y�x� � l4 is perturbed to nu-
cleate pairs of �l4 ! l0� and �l4 ! l2� transitions. The
data in Fig. 6 clearly show that the �l4 ! l0� zones travel
at a higher speed than the �l4 ! l2� transition, whereas
the speed of the �l4 ! l0� and �l2 ! l0� transitions are
identical. These findings are in good agreement with the
FHN simulations, which indicate that the particle-like dy-
namics of the front deformations are indeed caused by the
interplay of the destabilizing velocity variations and the
stabilizing effect of front curvature.

In conclusion, this study revealed a novel class of
steady-state solutions in excitable RD systems. These
solutions are particle-like, traveling front deformations
that mediate transitions within stable bound pulse pairs.
They are characteristic for all wave-supporting media in
which the steady state is a stable focus. Accordingly, we
expect that the phenomena described should exist in a
broad variety of physicochemical and biological systems.
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