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Tracking Waves and Vortex Nucleation in Excitable Systems with Anomalous Dispersion
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We report experimental results obtained from a chemical reaction-diffusion system in which wave
propagation is limited to a finite band of wavelengths and in which no solitary pulses exist. Wave
patterns increase their size through repeated annihilation events of the frontier pulse that allow the
succeeding pulses to advance farther. A related type of wave dynamics involves a stable but slow
frontier pulse that annihilates subsequent waves in front-to-back collisions. These so-called merging
dynamics give rise to an unexpected form of spiral wave nucleation. All of these phenomena are
reproduced by a simple, three-species reaction-diffusion model that reveals the importance of the
underlying anomalous dispersion relation.
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which involves a fast activator u and a slow inhibitor
variable v. We extend this model by introducing a second

slow leading front. For even larger values of � (here 0.30),
the tail of the dispersion relation becomes unstable giving
Propagating waves of excitation are known to exist in
numerous biophysical and physicochemical systems [1,2].
Important examples include neuronal and cardiac tissue
as well as gas discharge systems and chemical reaction-
diffusion (RD) media. The dynamics of wave trains are
dominated by the dispersion relation which relates the
pulse speed c to the period T. Most experimental systems
show a monotonically increasing dispersion relation c�T�
that converges to the velocity of a solitary pulse for very
large periods [3]. Moreover, one finds a low-period limit
below which no stable wave trains exist. Exceptions to
this normal scenario are found in the catalytic reduc-
tion of NO with CO on Pt�100� surfaces [4], the 1,4-
cyclohexanedione Belousov-Zhabotinsky (CHD-BZ)
reaction [5,6], in neuronal tissue [7], and perhaps in other
biological systems [8]. In these cases, the dispersion
relation shows nonmonotonic behavior, but nonetheless
extends to infinitely large periods.

Nonmonotonic dispersion relations give rise to several
remarkable phenomena that are not found in systems with
normal dispersion, such as nonunique rotation periods of
spiral waves [9], stable pulse multiplets [10], unusual
steady-state solutions of front lines [11], and different
velocities for the same wavelength [12]. In this context,
the CHD-BZ reaction has become a valuable model. It
involves the oxidation of 1,4-cyclohexanedione by bro-
mate in an acidic medium. Similarly to the classic ma-
lonic acid-BZ reaction [1], the main nonlinearity in the
CHD-BZ system stems from the autocatalytic production
of bromous acid, but it does not induce the formation of
undesired gas bubbles. In this Letter we describe an
unexpected low-frequency limit for pulse trains in the
CHD-BZ systems that gives rise to a tracking-like evolu-
tion of wave patterns. Moreover, we identify a novel
nucleation mechanism of spiral waves. These results are
reproduced by a simple, three-species RD model.

Our simulations are based on Barkley’s model [13]
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inhibitory control species w according to
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where �, a, �, 
, and � are dimensionless constants.
Figure 1(a) shows a typical example of a solitary excita-
tion wave propagating in a one-dimensional system to-
wards the right. In the back of the leading u pulse, the
system is refractory due to high values of v. Moreover, w
decreases during the phase of high u values and slowly
relaxes back to its steady-state value �. Since v and w
represent the concentrations of inhibitory species, this
scenario creates a nonmonotonic inhibition profile in
the wake of the pulse.

To investigate the dispersion relation of our model, we
study the rotation period of single pulses propagating in
circular, one-dimensional media. This approach mimics
an infinite wave train while avoiding wave train insta-
bilities that could give rise to nonuniform interpulse
distances. Figure 1(b) shows the resulting pulse speed as
a function of the rotation period T for different values of
�. The four dispersion relations are clearly anomalous
and show a single maximum as well as a high-frequency
limit. As the value of � is increased, the low-frequency
tail of the dispersion relations is lowered in accordance
with the expected �-controlled inhibition far from the
pulse. Moreover, the upper two curves show a unique
period T0 for which c�T0� � c0 and dc=dT > 0. This
period corresponds to the interpulse period in stable
stacked pulse clusters. For � � 0:28, no such stable period
exists and trailing pulses annihilate in the back of the
 2004 The American Physical Society 248301-1
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FIG. 2. Space-time plots of stacking, merging, and tracking
waves. (a)–(c) Numerical simulations with � � 10�2, a � 0:7,
� � 0:3, 
 � 5:0, and � � 0:24 (a), 0.28 (b), 0.30 (c).
(d)–(f) Experimental data for the initial concentrations in
mol/L: �H2SO4� � 0:6, �CHD� � 0:2, �Fe�batho�SO3�2�

4�
3 � �

0:0005, and �NaBrO3� � 0:30 (d), 0.25 (e), 0.20 (f). The hori-
zontal and vertical axes span 26:8 mm (d), 7:1 mm (e), 5:7 mm
(f), and 375 s (d), 300 s (e), 600 s (f), respectively.
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FIG. 1. (a) Solitary wave pulse in a three-species model of an
excitable RD systems for � � 0:28. (b) Four representative
dispersion relations that correspond to stacking (� � 0:20,
0:24), merging (� � 0:28), and tracking (� � 0:30) waves.
The lowest curve is confined to a finite band of periods. The
other parameters are as follows: � � 10�2, a � 0:7, � � 0:3,
and 
 � 5:0.
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rise to a finite band of allowed interpulse periods
and wavelengths. Notice that this phenomenon shares
certain similarities with ’’packet’’ waves in BZ micro-
emulsions [14].

The wave evolution in one-dimensional systems with-
out periodic boundary conditions is illustrated in Fig. 2.
Each picture represents a space-time plot in which time
evolves in upward direction. Frames (a)–(c) are obtained
through numerical integration of Eqs. (1)–(3), whereas
frames (d)–(f) are experimental data. In our simu-
lations, excitation pulses are initiated at the left boundary
by periodic perturbations of the system. The experi-
ments are carried out by filling thin capillary tubes (inner
diameter 0.8 mm, length 90 mm) with the CHD-BZ
solution.

Stock solutions of CHD (Aldrich), NaBrO3 (Fluka),
and H2SO4 (Riedel–de Haën) are prepared in nanopure
water. As the redox catalyst we use Fe�batho�SO3�3�

4�
3

(25 mM) because of its high contrast between the reduced
and oxidized state [15]. Very similar results are also
obtained with Fe�phen�2�=3�

3 (ferroin/ferriin) at smaller
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�NaBrO3�. The reaction system is monitored with a
charge-coupled-device camera that resolves concentra-
tion differences between the reduced and oxidized forms
of the involved catalyst. Accordingly, oxidation waves
appear as bright bands in Figs. 2(d)–2(f). In the experi-
ments, waves nucleate spontaneously at the open ends of
the capillary tube of which only the left side is shown. At
these ends bromine gas escapes from the solution into the
atmosphere, thus, shifting the medium locally into an
oscillatory state. The resulting initiation period remains
essentially constant in time, but varies between different
experimental runs.

Figures 2(a) and 2(d) show typical examples of stack-
ing waves. Here, fast excitation fronts approach the back
of a leading, slow pulse and form closely spaced wave
packets. The dispersion relation has the main features of
the curves shown in Fig. 1(b) for � � 0:20 and 0.24.
Accordingly, the speed and the period within the wave
packets corresponds to c0 and T0. The dynamics in
Figs. 2(b) and 2(e) are caused by merging waves that
obey dispersion relations similar to the one shown in
Fig. 1(b) for � � 0:28. Finally, Figs. 2(c) and 2(f) present
examples for tracking waves. In this dynamic regime, the
first wave pulse travels only a short distance before van-
ishing in the highly inhibited medium. Subsequent
pulses, however, travel an increasingly longer distance
since their predecessors have partially ‘‘cleared the way’’
248301-2
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FIG. 3. Consecutive snapshots of merging waves in a thin
layer of the CHD-BZ reaction. A pair of spiral waves nucleates
from the second wave front emitted by the target pattern.
Initial concentrations are the same as in Fig. 2(e). Image
area: 6:9 cm2. Time between frames: 27, 33, and 70 s.
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by decreasing the local concentrations of inhibitory spe-
cies. This behavior is characteristic for excitable systems
with finite-bandwidth dispersion relations (cf., Fig. 1(b),
� � 0:30). To the best of our knowledge, this is the first
example for this interesting and unusual form of wave
propagation. Moreover, we find in all three cases an ex-
cellent qualitative agreement between experiments and
simulations.

In the tracking examples shown in Figs. 2(c) and 2(f)
the period of initiation was chosen to be on the stable
branch (i.e., dc=dT > 0) of the finite bandwidth disper-
sion relation. This assures that the overall wave pattern
grows at a constant speed Ct which depends on the wave-
length of the wave train �i, the decay length �i of pulses
entering the steady-state medium at the leading edge of
the pattern, as well as on their average speed Ci during
the decay. Assuming that Ci is approximately the wave
velocity ci within the pulse train, we obtain a growth
speed of

Ct � ci
�i

�i � �i
: (4)

Analysis of the experimental data in Fig. 2(f) yields
�i � 1:7 mm, �i � 0:13 mm, ci � 80 �m=s, and Ct �
5:4 �m=s, which is in good agreement with the value of
Ct � 5:7 �m=s predicted by Eq. (2).

However, tracking behavior can be significantly more
complex than the dynamics shown in Figs. 2(c) and 2(f).
If the initiation period is on the unstable branch
(dc=dT < 0) of the dispersion relation, we observe non-
uniform growth dynamics that involve phases of expan-
sion as well as phases of sudden retraction. Consequently,
the boundary of the wave pattern has a very rugged and
complicated shape in the space-time plots suggesting that
�i and Ci depend on �i for wave trains with long wave-
lengths. This behavior is related to the transient bunching
dynamics of stacking wave trains, in which an unstable
wave packet decays into nearly stable clusters with
closely stacked pulses that are spaced at long, and hence
least unstable, intercluster distances [6]. Whereas this
cascade of bunching events will eventually lead to one
large cluster with uniform pulse spacing, it is currently
unclear how, if at all, tracking waves with dci=dTi < 0
establish a stationary state.

Stacking, merging, and tracking waves also exist in
two-dimensional systems [16]. To create pseudo-two-
dimensional conditions in our experiments, we typically
confine thin layers of the reaction solution between two
glass plates spaced at 0:5 mm. In the following, we dis-
cuss a novel mechanism for spiral wave nucleation as a
highly unexpected example of the wealth of phenomena
in excitable systems with anomalous dispersion.

Figure 3 shows four consecutive snapshots of wave
propagation in the CHD-BZ reaction. In this particular
experiment, a target pattern of concentric wave rings
forms around a small inhomogeneity. To its upper right,
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a second wave is initiated. This process can occur sponta-
neously or it can be induced in a controlled fashion via
electrochemical initiation. The reaction medium in Fig. 3
creates waves that show merging behavior similar to
the one-dimensional examples in Figs. 2(b) and 2(e).
The occurrence of merging events can be seen most
clearly along the lower, left edge of the wave structure
in Fig. 3(d). As the outermost circular fronts collide
[Fig. 3(a)], they undergo mutual annihilation as expected
for typical excitation waves. However, the second wave
front emitted by the pacemaker of the target pattern has
no counterpart to collide with. Moreover, this second
pulse travels faster than the, now fused, 8-shaped leading
front. This velocity difference culminates in a front-to-
back collision in which the trailing front vanishes. This
merging process is interrupted along a short, central seg-
ment where the trailing pulse survives, thus entering a
wave-free circular domain left behind by the upper, soli-
tary front. The resulting banana-shaped front segment has
a nearly perpendicular orientation with respect to the
leading front [Fig. 3(b)]. This scenario induces the for-
mation of a pair of counter-rotating spiral waves [Fig. 3(c)]
that eventually becomes the primary pacemaker of the
overall wave pattern since their rotation frequency is
greater than the frequency of the target pattern.

To evaluate whether the vortex nucleation mechanism
in Fig. 3 can be reproduced by our model, we carried out
numerical simulations that employ initial conditions very
similar to those of the experiment. Figure 4 shows a
sequence of six snapshots of the variable v�x; y; t�. The
simulations involve two initiation sites along the y � x
diagonal of the two-dimensional system. One site acts as a
periodic pacemaker, whereas the other one triggers only
one wave pulse [Fig. 3(a)]. The evolution of this system
248301-3
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FIG. 4. Consecutive snapshots of merging waves and spiral
nucleation obtained by numerical integration of Eqs. (1)–(3).
Model parameters: � � 10�2, a � 0:8, � � 0:3, 
 � 5:0, and
� � 0:28.

P H Y S I C A L R E V I E W L E T T E R S week ending
18 JUNE 2004VOLUME 92, NUMBER 24
shows excellent agreement with the experimental data as
it induces the formation of a single pair of spiral waves.
Moreover, our simulations successfully reproduce the
u-like shape of the second front in the upper left quadrant.
This peculiar shape stems from the interplay of curvature
effects and the nonmonotonic inhibition profile left be-
hind by the leading front.

Last, we suggest that the spiral nucleation mechanism
described in this Letter is the primary source of spirals
that form in large numbers in CHD-BZ systems with
merging waves. While the specifics depend strongly on
the density, frequency, and relative location of the initial
pacemakers, it is likely that nearly all spirals result from
processes, the main essentials of which are captured by
the simple scenario shown in Figs. 3 and 4. This mecha-
nism is, therefore, important and characteristic for excit-
able systems with anomalous dispersion that lack a stable
fixed point c � c0. Moreover, it should be distinguished
from other instabilities that generate vortices through
spiral breakup [17] or after external wave initiation in
the refractory zone of an excitation pulse [18].

In conclusion, we have devised and tested a simple,
three-species RD model that captures all of the phenom-
ena currently known to exist in the CHD-BZ reaction.
These include stacking and merging wave trains that
result from nonmonotonic, nonoscillatory dispersion re-
248301-4
lations. Moreover, for media with a highly inhibited rest
state, we discovered finite-bandwidth dispersion relations
that induce tracking wave patterns. The latter structures
expand despite the lack of stable, solitary fronts. For
merging waves, we identified a novel mechanism of spiral
wave generation from simple, nonrandom initial condi-
tions. It will be interesting to explore whether these
phenomena can be found in biological systems that obey
anomalous dispersion relations.
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