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Excitation Waves on Cylindrical Surfaces: Rotor Competition and Vortex Drift
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An experimental technique for preparation and image reconstruction of excitation waves in
cylindrical Belousov-Zhabotinsky media is developed. It is found that pairs of spiral rotors generate
ring-shaped waves by wave collisions which occur approximately 180± behind the pacemakers.
Numerical simulations reveal radius-dependent competition between common vortices and rotating
planar waves. This master/slave dynamics can give rise to a topology-induced spiral drift along
helical loopy lines which is not due to meandering or curvature-induced changes in wave velocity.
[S0031-9007(96)02162-X]

PACS numbers: 82.40.Ck, 82.20.Mj, 82.20.Wt

Propagating waves of excitation belong to the most
striking phenomena in nonlinear reaction-diffusion sys-
tems [1]. They occur in a variety of biological, chemical,
and physico-chemical media as diverse as cardiac tissue
[2], slime mold populations [3], and catalytic surfaces [4].
Recently, questions related to wave dynamics in confined
domains, such as rings [5], small disks [6], curved sur-
faces [7], and three-dimensional media [8] have caught
more and more attention, possibly because of their rele-
vance for some biophysical systems [2,9]. Rotating waves
on curved surfaces are of particular interest, since nonuni-
formly curved surfaces can induce effects such as fre-
quency changes or drift of spiral waves [10,11].

This Letter presents results on wave propagation on uni-
formly curved cylindrical surfaces. Experimental proce-
dures are presented and demonstrated for the example of
rotating spirals in the Belousov-Zhabotinsky (BZ) medium
[12]. In contrast to spatially infinite two-dimensional me-
dia, cylindrical surfaces support not only the rotation of
spirals but also the rotation of planar solitary waves. The
interaction between both rotors, resulting in master/slave
dynamics (i.e., suppression of slow pacemakers by fast
pacemakers) and vortex drift are discussed on the basis of
numerical simulations. The effects described here are not
caused by curvature-dependent changes in propagation ve-
locity, but reveal novel phenomena which should be also
of importance for other surfaces (e.g. tori).

The cylindrical reaction medium was prepared as fol-
lows. A round glass tube (inner diameter 5.8 mm) was
filled with hot agarose gel (Fluka; 4% w�y). While the
agarose was still liquid, a glass rod (diameter 5.0 mm)
was inserted and centered in the tube. After gelation
the rod was carefully removed. The resulting cylindri-
cal gel layer was then loaded with the following BZ so-
lution: �NaBrO3� � 0.35 M, �MA� � 0.3 M, �H2SO4� �
0.35 M, and �Ferroin� � 10 mM. After the concentrations
in the solution and the gel reached equal values, the solu-
tion was removed from the system (dilution factor 1:4).

For reconstructing the wave locations on the cylindri-
cal surface in terms of the spatial coordinate z, the angle
f, and the elapsed time t, the following procedure was

developed: The probe was rotated with a constant angu-
lar frequency v (typically 0.3 Hz) frequencies around its
central axis (coincides with the z axis). Lines along the
z axis were digitized with a sampling rate of 0.16 s. The
resulting binary data form an array Inm with n, m represent-
ing the experimental coordinates z and F of the reaction
system, respectively. Notice that a 360± scan of the sur-
face requires the time 2p�v for completion. Hence, the
experimental coordinate F is related to the elapsed experi-
mental time t by F � vt (for clarity the rotation angle F

is distinguished from the time-independent “pure” cylinder
coordinate f).

Figure 1 shows a typical example of the described pro-
cedure as a �z, F� plot of local intensities. The plot
reveals a pair of counterrotating spirals located at approxi-
mately z � 1 cm and F � n 3 360± that slowly expands
in the course of time. Additional waves (at low z val-
ues) emanate from a pacemaker outside the observation
area.

Based on the data recorded in �z, F� plots the origi-
nal cylindrical geometry of the excitable system can be
reconstructed. Figure 2 shows the wave structure of
the 2600± $ F . 2960± interval of Fig. 1 in a three-
dimensional representation, with the subfigures 2(a) and
2(b) differing only in their relative points of view. The
spiral pair emits ringlike wave segments into the top part
of the cylinder, which is an intrinsic feature for pacemak-
ers on cylindrical surfaces: In an ideal experiment (with-
out additional wave sources) a pacemaker generates waves
that collide at iso-z level 180± “behind” their source. This
phenomenon causes the wave structure to transform into
two rings propagating toward z ! 6`, respectively.
An additional feature that cannot be found in flat two-
dimensional media are solitary planar waves which extend
along the z axis and are therefore periodic wave structures.
Their characteristics and interaction with spiral waves (or
vortices) are discussed below on the basis of numerical
simulations. The presented approach should allow analo-
gous experimental investigations. These require however,
smaller cylinder radii, which makes the preparation of the
gel layer difficult.
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FIG. 1. Spatiotemporal evolution of a pair of spiral waves
rotating on a cylindrical surface shown in terms of the
experimental coordinates z (long axis) and F (rotation angle).
According to the rotation of the probe, the spirals appear
repetitively, revealing different phases of their pivoting motion.
Data were obtained approximately 30 min after preparation of
the system. Spirals nucleated spontaneously.

Calculations are based on the Tyson-Fife model [13],

�u � DuDu 1 ´21�u 2 u2 2 fn�u 2 q���u 1 q�� , (1)

�n � DnDn 1 u 2 n , (2)

where u and n describe the scaled concentrations of
HBrO2 and ferriin, respectively. The parameters ´ � 0.1,
f � 2.0, and q � 0.002 define an oscillatory medium
in which the tips of spiral waves have simple circular
trajectories (diffusion coefficients: Du � 1.0 and Dn �
0.6). In the following, space and time units are denoted
as su and tu, respectively. Since the gel employed in
the experiments had no-flux boundary conditions in r
direction and by considering the gel to be of infinitesimal
small thickness, we can formulate the Laplacian in terms
of cylinder coordinates �r , f, z� as

Dc � r22≠2c�≠f2 1 ≠2c�≠z2. (3)

Spiral waves were generated from the steady-state sys-
tem by setting a strip [four grid points wide and half the
system length �Lz�2� long] to u � 0.4 and a neighboring
strip to y � 0.05. This initial condition creates a planar
wave with a tip that starts to form the desired rotating vor-
tex. While in an ordinary plane, a rotating spiral would ul-
timately cover the entire system, the planar wave segment
extending in z direction becomes a competitor on cylin-
drical surfaces. This effect is demonstrated in Fig. 3(a)
showing the superposition of six consecutive snapshots as
found nine spiral periods after initiation. The cylinder is
divided into two distinct regions with one area �z . 50�

FIG. 2. Cartesian reconstruction of the cylindrical medium
based on the data presented in Fig. 1. The vertical direction in
this figure coincides with the (horizontal) z axis of Fig. 1 and
shows the same snapshot from different points of view. The
ring-shaped waves, propagating toward the top of the cylinder,
are emitted by the spiral pair.
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dominated by the ringlike waves emitted by the spiral and
the second �z , 50� controlled by the planar wave. The
rotation center of the spiral wave appears as a dark region
close to z � 50. Furthermore, the second snapshot (indi-
cated by white arrows) shows a collision between spiral
tip and planar wave. This collision occurred periodically
and is characteristic for the spatiotemporal evolution of this
wave structure in the given medium.

A detailed trajectory of the spiral tip is presented in
Fig. 3(b) for a cylinder circumference of L � 17.5 su.
The tip location was defined via the maximal absolute
value of the cross product jgrad�u� 3 grad�n�j [14]. A
pronounced drift of the spiral tip was found for this cylin-
drical geometry. In the context of the three-dimensional
Cartesian space, the geometry-induced drift [Fig. 3(b)] oc-
curs along a helical loopy line, moving the vortex around
the cylinder toward the upper z boundary. Initially, the
trajectory shows small transient perturbations, which are
followed by a steady motion with constant drift velocity
and period (in this example: zdrift � 7.5 su, Tdrift � 31 tu
with respect to a 360± drift). Notice, that this geometry-
induced drift is not caused by the meandering instability
[14], because for the given parameters the tip trajectory is
circular in sufficiently large plane systems.

Vortex drift does not occur necessarily in cylindrical
systems. While the rotation period of spiral waves is a
characteristic value determined by the system parameters,
the rotation period of planar waves extending along the z
axis strongly depends on the circumference of the cylinder.
Figure 4 shows the dispersion curve of the investigated
system, relating the rotation period Tp of these solitary
planar waves with the cylinder circumference L. The
plot reveals three major dynamic modes: Below L �
10 su no stable excitation waves could be initiated and
phase-locked bulk oscillations were found. Between 10 su
and approximately 26 to 28 su proper excitation waves
were generated that—with increasing values of L—
gradually transformed into phase waves. The dashed line
at Tsp � 5.3 tu indicates the characteristic rotation period
of spiral waves. Tsp is therefore not the smallest period
supported by the cylindrical medium introducing the pos-
sibility of competition between planar and spiral waves.

The space-time plots shown in Fig. 5 demonstrate the
two major scenarios resulting from this competition. Plots
were generated by collecting consecutive cuts u�z� for an
arbitrary but constant f value. These cuts were then piled
up to give the presented u�z, t� plot. Figures 5(a) and
5(b) correspond to calculations obtained with L � 25.5
and 17.5 su, respectively, and give typical examples for
the dynamics observed under Tsp , Tpl (a) and Tsp . Tpl
(b). While planar waves extending in the z direction
appear as horizontal lines in the space-time plot u�z, t�,
spirals generate diagonal (or even V-shaped) segments.
In the situation of Fig. 5(a), the spiral gains control of
the entire system within approximately nine periods and
removes the planar wave rotor completely. In addition,
no drift of the spiral was detected. Figure 5(b), however,

FIG. 3. Simulations demonstrating the competition between
spiral and planar wave rotors on a cylindrical surface and
the resulting spiral drift. (a) Superposition of six consecutive
snapshots of u�x, y� (time interval Dt � 0.66 tu) with white
arrows indicating the second snapshot. (b) Trajectory of the
drifting spiral tip. Parameters used for both calculations:
System length in z direction Lz � 100; grid spacing of z and
arclength s: Dz � Ds � 0.25; time step Dt � 0.001. The
Laplacian was calculated using a nine-point formula.
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FIG. 4. Dispersion curve of the system relating the rotation
period Tp of planar rotors to the circumference L of the
cylinder. The period of 6.5 tu corresponds to the intrinsic
oscillation period of the system (bulk oscillations). The dashed
line indicates the rotation period of spiral waves as found
in large flat two-dimensional systems. Data were obtained
from simulations of one-dimensional ring-shaped media with
Dt � 0.001 and Ds � 0.1.

shows a slow process of planar wave expansion, thus
removing the spiral. The process is accompanied by
adjustments in local frequency: Due to the different
periods of spiral and planar rotor several waves vanish.
This effect occurs during the drift of the vortex core across
the analyzed line of constant f value. The described
master-slave scenario and its characteristic spiral drift
could also be of interest for certain biophysical systems
[2,3,9].
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