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Abstract — We investigate the effect of unexcitable obstacles on rotating scroll waves in
three-dimensional excitable media. Our experiments use the autocatalytic Belousov-Zhabotinsky
reaction and demonstrate that vortex filaments can be pinned to small, spherical obstacles.
We find that single pinning sites increase the lifetime of collapsing vortex rings. Lifetimes and
accompanying shape changes of the vortex filaments are well described by mean-curvature flow.

We also create stationary networks of pinned filaments involving several pinning sites.

Copyright © EPLA, 2010

Excitable and oscillatory reaction-diffusion systems are
known to organize rotating spiral waves of typically
constant pitch and frequency. They are found in exper-
imental systems as diverse as the mammalian neocortex,
oocytes, catalytic surfaces, corroding steel, and nests of
honey bees [1-5]. Over the past two decades systematic
research efforts have resulted in a very good understand-
ing of two-dimensional spirals and their response to exter-
nal fields and gradients [6,7]. Also the pinning of these
vortices to unexcitable domains has attracted considerable
interest [8-10] which is partly driven by its relevance to
cardiology and specifically tachycardia and sudden cardiac
death [11,12]. The first, controlled experimental examples
of spiral wave pinning were reported for the photosensitive,
Ru(bpy)s-catalyzed Belousov-Zhabotinsky (BZ) reaction,
where an argon ion laser was used to created photochem-
ically inhibited disks [13]. Other examples include 2D
vortex pinning in reacting membrane systems with immo-
bilized catalyst patterns and layers of cultured cardiomy-
ocytes [14,15].

The rotation period of pinned, two-dimensional vortices
depends strongly on the perimeter U of the pinning
domain and the length of the waves’ refractory tail A,.
For large obstacles (U > \,), the spiral tip orbits along
the obstacle boundary at a system-specific but constant
velocity ¢ yielding a period of Top=U/cy. For smaller
orbits, (normal) dispersion decreases the wave speed and,
hence, causes periods larger than T [13]. Chemical wave
rotation around even smaller obstacles (U < \.) were
studied in microfluidic devices with hundreds of inert
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obstacles arranged on a square lattice [8]. These conditions
induce rotation around obstacle groups in which the spiral
tip traces complex periodic orbits and the U-dependence
of the period follows a devil’s staircase. Spiral wave
pinning has been also studied for systems with anomalous
dispersion which can induce front aggregation in multi-
armed spirals [16].

Vortex motion in three-dimensional excitable systems
is qualitatively different from its flat counterpart. Fore-
most, wave rotation occurs around string-like filaments
that move with speeds proportional to the local filament
curvature. Furthermore, this motion can be affected by
changes in the rotation phase (“twist”) along the fila-
ment [17]. In 2009, we reported the first experimental
demonstration of scroll wave pinning [18]. These experi-
ments studied vortex rings attached to torus-shaped obsta-
cles. Such three-dimensional vortex pinning should be
possible for wide range of geometric and topological situ-
ations including those with striking mismatches between
the shape of the filament and the arresting obstacle. This
complexity raises a multitude of questions regarding fila-
ment dynamics, pinning criteria, forced unpinning, and
possible stationary states. To date these questions are
widely unanswered. Here, we focus on the pinning of scroll
rings to small spherical obstacles that increase the local
rotation period only slightly. Specifically, we demonstrate
vortex pinning involving up to four obstacle units along
the filament. We also show that such pinning can prevent
the collapse and the annihilation of vortex rings.

Our experiments use the ferroin-catalyzed Belousov-
Zhabotinsky (BZ) reaction in which wave propagation is
“fueled” by the autocatalytic production and diffusion of
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bromous acid [19]. This chemical system is a frequently
studied experimental model for three-dimensional scroll
wave dynamics in excitable systems [20]. To initiate scroll
waves in a controlled fashion, we prepare reaction systems
in which the lower layer is contained in an agar gel
(0.8% w/v), while the upper portion is liquid solution.
The thickness of the gel and the liquid layer are 4.0 mm
each. The initial concentration of all reactants is the
same throughout the two layers: [HySO4] =0.16 mol/L,
[NaBrOg] = 0.04mol/L, [malonic acid] =0.04mol/L, and
[Fe(phen);SO4] = 0.5 mmol /L. All experiments are carried
out at 21.5°C.

Scroll rings are then created in two steps: 1) With a
silver wire we start an expanding spherical wave from
an arbitrary point at the gel/liquid interface; 2) several
seconds later we briefly mix the liquid phase, which creates
a spatially homogeneous top layer and a bowl-shaped wave
in the gel portion. The upper rim of this half-sphere curls
inwards and nucleates the desired scroll ring. For scroll
wave pinning experiments, we introduce chemically inert
obstacles into the system. These obstacles are typically
spherical glass beads with a radius of 1.0 mm. Prior to the
scroll ring initiation, the beads are pressed halfway into
the gel.

Wave patterns are detected based on changes in the
system’s light absorption. Image data are acquired under
white light illumination with a CCD camera (equipped
with an additive dichroic blue filter) mounted over the
system. Accordingly, low and high image intensities corre-
spond to areas in which the employed redox indicator
is chemically reduced (excitable) and oxidized (excited
or refractory), respectively. We measure the horizon-
tal projection of the scroll wave filaments from image
sequences covering about one rotation period of the
vortex. The employed method utilizes a characteristic
decrease in the absolute change of the local image intensity
in and around the filament.

Figures 1(a)—(d) show four consecutive snapshots of a
collapsing scroll ring in this chemical system (see also
movie file 1beadQT1.mov). The vortex is pinned to a spher-
ical obstacle which has a profound effect on the scroll ring
collapse. In (a) the filament loop is essentially circular with
the obstacle at its topmost point. In (b), (c) the filament
has become smaller and droplet-shaped. The small dark
spots are gas bubbles. The snapshot (d) is recorded shortly
before the annihilation of the vortex ring. In contrast
to the isotropic shrinkage of free vortex rings [21], the
pinned pattern becomes asymmetric and has some quali-
tative resemblance to a pendant droplet. The cusp of this
drop shape is located at the obstacle indicating successful
local pinning of the vortex loop. This conclusion is further
supported by the space-time plot in fig. 1(e). The latter
is constructed from consecutive intensity profiles along a
constant line through the obstacle. In the context of the
image this line is vertical. The space-time reemphasizes
that only the lower pole of the wave emitting filament
loop moves while the pinned top stays stationary.

Fig. 1: (Colour on-line) (a)—(d) Consecutive images of a scroll
ring in a thick layer of the excitable Belousov-Zhabotinsky
reaction. The vortex is pinned to a small spherical obstacle
in the upper midsection. Notice that in this projection, the
filament loop (see the dotted (yellow) line in (a)) appears as
a closed curve emitting inward and outward moving waves
in an alternating fashion. This periodic wave emission results
from spiral rotation around the filament and is illustrated in
the space-time plot (e). Within the context of the figure, the
vertical space axis in (e) corresponds to the constant, vertical
line in (a)—(d) crossing the obstacle center. Time increases
rightwards spanning 9500s. Images are recorded (a) 560s,
(b) 3600s, (c) 7440s and (d) 7960s after the initiation of the
vortex. Field of view (a)—(d): 2.4 x 2.4 cm®.

Figure 2 characterizes the key features of the collapse
of locally pinned scroll rings. In (a) we show the measured
coordinates of a representative filament loop for four
different times. A main result concerns the lifetime ¢,
of the vortex, which for free structures of initial radius
Ry is known to be t; = R2/2a [21]. In this equation,
« is the system-specific filament tension. We find that
independent of Ry the lifetime of a singly pinned vortex
ring is increased by a factor of 1.25+0.01 (fig. 2(b)).
This effect is accompanied by systematic changes in the
filament loop’s width w and height h. More precisely, h is
here the loop’s maximal extension between the pinning
obstacle and its lower pole and w is the maximal extension
in perpendicular direction. While h, w, and h+ w evolve
in non-linear fashions, the quantity (h2+ w?)/2 decreases
linearly (fig. 2(c)). We also analyzed the eccentricity of
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Fig. 2: (Colour on-line) (a) Collapse of a singly pinned scroll wave filament. The obstacle is located around the real-space
coordinates (0,0) and shown as a black ring. Open circles (red) are experimental data obtained 900, 2900, 4900, and 6100 after
vortex initiation. (b) Lifetime of singly pinned (red circles) and free (blue triangles) scroll rings as a function of the square of
their initial radius. (¢) Geometric measure of the pinned filament size as a function of time. The quantities h and w are the
filament loops’ height and width, respectively. (d) Geometric measure of filament eccentricity as a function of time obtained
from the three representative examples in (c). All solid lines in (a)—(d) are obtained by describing the filament motion in terms
of mean-curvature flow pinned to a point-shaped site. The dashed curve in (a) illustrates curvature flow with pinning to a
circular obstacle and filament termination in normal direction to the obstacle boundary.

the filament loop using the related expression h? —w?

(fig. 2(d)), which equals zero for circles. The data
show an interesting non-monotonic time dependence
of this quantity with a single maximum reached at a
time proportional to Ry. Notice that figs. 2(c) and (d)
show three representative data sets that differ only in
the initial radius of their filament loops. These radii
are: 2.26mm (squares), 3.29mm (stars), and 4.29mm
(circles). As expected scroll ring annihilation occurs at
small but non-zero values of h and w. We suggest that
this annihilation point corresponds (at least qualitatively)
to the critical radius of wave nucleation [22]. This minor
feature is not captured by egs. (1), (2) and not further
studied.

To obtain a better understanding of the main exper-
imental results in fig. 2, we consider the curvature flow
model

ds

3 — (@N+06B)s,

(1)
which describes the motion of a filament s in the directions
of its unit normal vector N and unit binormal vector
B. The filament velocity is proportional to the local
curvature x and the proportionality constants o and 3 are
the filament tension and a translational drift coefficient,
respectively. Notice that this equation has been derived in
earlier studies and is valid for small values of curvature and
twist [23,24]. For our BZ system, we find o« = (1.4 £0.1) x
107% cm? /s (see the blue fit in fig. 2(b)) and 8~ 0. The
latter result implies that the filaments in our experiments
remain “flat” and do not leave their initial plane. This
further simplifies equation (1) to a mean-curvature flow
(curve-shrinking) problem. Notice that such curvature
flows have diverse applications ranging from quantum
field theories to grain boundary dynamics and image
processing [25-27].

It is notoriously difficult to find analytical solutions of

the seemingly simple equation

ds/dt = aNE. (2)
We hence numerically integrate this equation using
forward-Euler integration. After each iteration, the curve
is reparameterized to yield an essentially constant space
resolution of 30 um. The integration time step is 16 ms.
The pinning site is modeled with the Dirichlet boundary
condition (z,y) = (0, 0). Notice that this approach reduces
the spherical obstacle to a single point.

The results of these simulations are overall in very
good agreement with the experimental data in fig. 2. For
instance, we find that the lifetime ratio of singly pinned
to freely collapsing circles equals 1.28 which is close to
the measured value of 1.25. Such characteristic lifetime
ratios should exist for all geometrically similar curves with
given pinning sites. Interesting examples worthy of further
investigation could include families of elliptical filaments
with constant (initial) eccentricity and pinning sites.

The linear time dependence of the quantity (h%+
w?)/2 (fig. 2(c)) is reminiscent but must not be confused
with a striking feature of the “free” eq. (2). In the
absence of pinning and for closed curves, the enclosed area
decreases at a constant rate of 2ma. This result can be
readily obtained from the Gauss-Bonnet theorem and has
been discussed elsewhere [25,28]. Our finding that singly
pinned filament circles recover these dynamics in terms
of (h?+w?)/2 is not yet understood but might possibly
suggest the existence of a more general invariant or a
closely related law for pinned curve shrinking. Also the
experimentally observed evolution of the loop eccentricity
is recovered by the simulations (see fig. 2(d)). We note
that the experimental data in (d) have been corrected
to compensate for small, initial deviations from perfect
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Fig. 3: Scroll rings pinned to (a) two, (b) four, and (c), (d)
three spherical obstacles. In (c), a scroll ring is pinned to three
obstacles and an additional filament traces an undulating curve
across the system. Frame (d) shows a filament reconstruction
for the data in (c). Topological constraints suggest that the
lower and right obstacles attach to four filaments. Field of view
in (a)—(d): 2.4 x 2.4cm?.

circles. The data without this correction (not shown)
reveal eccentricity values below the simulated curves but
nonetheless match their slopes and overall shape.

Such shape deviations between the curves generated
from eq. (2) and the observed filament loops (see e.g.
innermost curve in fig. 2(a)) could result from our approxi-
mation of the pinning obstacle as a single point. We hence
studied curvature flow with pinning to the boundary of
a disk-shaped region. In these computations, the radius
of the disk matches the bead radius in the experiments.
The two filament termini evolve under boundary condi-
tions causing their tangential vectors to be (anti)normal
to the disk boundary. The results of these computa-
tions are shown as dashed curves in fig. 2(a). Deviations
between disk- and point-pinning curves are overall small
but increase during the later stages of the filament contrac-
tion as the disk-pinned filament does not disappear in the
center of the disk but at its boundary. More importantly,
the simulations still misrepresent the detailed shape of
the filament loop. Consequently, additional factors might
be relevant such as higher-order curvature terms in eq.
(2) or repulsive filament interaction. Lastly we note that
these results are the first study of pinned mean-curvature
flow.

Scroll wave filaments can also be pinned to more than
one obstacle. Figures 3(a), (b) show representative BZ
experiments in which initially circular filament loops are
pinned to two and four obstacles, respectively. Notice

that the emitted waves are nearly circular but have slight
elliptical and diamond-shaped deformations in (a) and
(b), respectively. A compression-like deformation close
to the obstacle can be also discerned in fig. 1(b). We
suggest that these deviations are caused by weak twist
patterns along the filament. These phase variations are
caused by lagging rotation around the obstacle spheres,
which are likely to induce tip orbits that are slightly
larger than for free rotation. Accordingly wave emission
in outward direction is slightly delayed in these regions.
Notice that the build-up of twist is limited by diffusion
and the overall system dynamics (see e.g. [18]). Based
on these considerations we predict that larger obstacles
should induce more pronounced deformations but we have
not further investigated this effect yet.

We find that the collapse of the vortex structures is
prevented if its filament is pinned to either three obsta-
cles arranged on the corners of an approximately equilat-
eral triangle (not shown) or four obstacles on a square
(fig. 3(b); see also movie file 4beadsQT.mov). Variations of
these three- and four-pin cases as well as larger numbers
of obstacles should induce the same stabilization. In all of
the latter cases, the filament loop does not remain circu-
lar but becomes deformed to a nearly polygonal curve with
vertices at the pinning sites. These stationary states do not
form in the case of two obstacles. The latter situation is
qualitatively different as the two filament arches approach
the same obstacle-connecting line. Preliminary experimen-
tal data suggest that short inter-obstacle distances result
in vortex annihilation while large distances cause a seem-
ingly stable lens-shaped filament state (see fig. 3(a)).
This finding can be interpreted as evidence of filament
repulsion and future analyses of the stationary states
might allow the formulation of an effective interaction
potential.

All prior examples in this Letter have exactly two
filaments terminating on each obstacle. For topological
reasons this number has to be even. In addition, the
pinned filaments must belong to pairs of counter-rotating
vortices (as viewed from the inside of the obstacle) to
yield an overall topologically surface charge of zero [29].
The experimental data in figs. 3(c), (d) strongly suggest
that the lower and the right obstacle pin four filaments
each (see also movie file 3beadsQT-2.mov). Due to a large
wave twist and a certain filament helicity, we did not
succeed in resolving the fourth filaments in close vicinity
of these two obstacles. This twisting arises from the
aforementioned frequency difference between the pinned
and the free vortex and is counteracted by the system’s
diffusion-mediated dynamics. Recent experimental studies
showed that this interplay and the resulting twist patterns
are well-described by Burgers’ equation [18,30]. A direct
consequence in our study is that the twist of the freely
rotating, long segments is more pronounced than for the
shorter obstacle-connecting filaments (fig. 3(c)).

To further evaluate the pinning of multiple filaments
to single spherical obstacles, we perform numerical
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Fig. 4: (Colour on-line) (a) Simulated wave pattern in the
Barkley model. Opaque (orange) and fully transparent regions
indicate high and low values of the variable v, respectively.
The system has three unexcitable, spherical obstacles (blue).
Pinned to these obstacles are six filaments (white lines), of
which two terminate at the system walls. (b) Space-time plot
of the same simulation constructed from the v dynamics along
a constant line crossing the right obstacle in (a). Time evolves
in upward direction. The wedge-shaped structure corresponds
to the decaying double filament in (a).

simulations on the basis of Barkley’s excitable reaction-
diffusion model [6]

%:Duv%—&-%{wl—w(u—vl_b)}y (3)

%:vazv—&—u—v,

(4)

where u and v are dimensionless variables. The model
parameters are a = 1.1, b=0.18, ¢ =0.02, and D, =D, =
1. For this choice of identical diffusion coefficients (and in
the limit of small curvature and twist), filament motion
occurs strictly in normal direction [31]. Spherical obsta-
cles are modeled as unexcitable regions with u=v=0.
All scroll waves are initiated by selectively removing
regions from a planar wave front. Our simulations use
Euler integration with a time step of 6 x 1073, The box-
shaped system is surrounded by Neumann boundaries and
resolved with 300 x 300 x 300 grid points at a constant
grid spacing of 0.2.

Figure 4(a) shows a typical example resembling the
experimental case in figs. 3(c), (d), which further supports
our earlier interpretation. The simulations also reveal that
the double-filament connection (see left obstacle pair)
is not necessarily stable. For the investigated parameter
values, the filament pairs mutually annihilate after finite
times that increase with increasing obstacle size and
distance. Prior to annihilation, the two filaments move
only slightly out of their common initial plane but decrease
their distance (fig. 4(b)). Notice that this decrease in
inter-filament distance occurs in a nearly linear fashion.

Our numerical studies also revealed that the specific
wave field around the filaments strongly depends on
the initial conditions. In addition, it is possible that
a tetrahedral arrangement of the four filament termini
on the obstacle surface might induce greatly enhanced
lifetimes of the involved “double bond” and possibly even
stable configurations for shorter distances.

In conclusion, we have described the first experimental
example of scroll wave pinning to inert spherical obstacles
much smaller than the vortex wavelength. The resulting
pinned structures have increased lifetimes or evolve into
stable, stationary vortex states. The corresponding fila-
ment networks obey rigorous topological constraints and
organize complex wave fields. Key aspects of scroll wave
pinning are well described by mean-curvature flow, thus,
providing an ideal platform for future analyses of filament
interaction. We believe that our study is also an important
stepping stone towards the description of vortex motion in
highly heterogeneous media such as neuronal systems and
cardiac tissue with unexcitable inclusions.
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