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Abstract. We report results on chemical wave propagation obtained from
experiments with a modified Belousov–Zhabotinsky reaction. Under pseudo-one-
dimensional reaction conditions, excitation pulses either form closely stacked,
stable wavepackets or merge with a slow leading pulse in front-to-back collisions.
Moreover, wave stacking can involve the cascading formation of metastable
clusters. These phenomena are due to anomalous dispersion relations in which
the derivative of the pulse speed with respect to wavelength can involve negative
values. Wave stacking and merging are also observed in thin reaction layers where
they affect the evolution of target patterns. Additional results on the concentration
dependences of the overall dynamics and pulse speeds are presented.
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1. Introduction

Reaction systems far from thermodynamic equilibrium can form a fascinating wealth of spatio-
temporal patterns [1]. These dissipative structures often result from autocatalytic processes
that are spatially coupled by transport phenomena such as diffusion or electric currents. They
encompass stationary Turing patterns as well as travelling waves, both of which have attracted
considerable interest in physics, chemistry and biology [2]–[6]. Of particular importance
are wave patterns in excitable systems in which a local perturbation must exceed a certain
threshold value to trigger a propagating chain of excitation events [7]. In response to a super-
threshold perturbation, the system undergoes a large amplitude change before it relaxes into
its dynamically stable rest state. Important examples for this type of behaviour are found in a
variety of living systems including calcium waves in single cells [8], morphogenetic waves in
aggregating colonies of micro-organisms [9] and propagating action potentials in cardiac and
neuronal tissue [10, 11].

Non-biological systems, such as the Belousov–Zhabotinsky (BZ) reaction, provide ideal
models for the quantitative experimental analysis of the generic spatio-temporal phenomena in
excitable reaction–diffusion systems [1, 12]. Many of these phenomena can be discussed in terms
of a set of two coupled reaction–diffusion equations governing the evolution of the concentration
distribution of a fast activator and a slow control species [13]. In the closed BZ reaction, the local
dynamics can be monostable, excitable or oscillatory. Excitable BZ systems show solitary pulses
that propagate with a constant velocity that depends on the diffusion constant of the activator
species (HBrO2) and the rate constant of the autocatalytic reaction step [14]. The dynamics of
wave trains is more complex because the distance between the pulse and its predecessor plays an
important role. If this distance is large, the medium in front of the pulse is fully recovered and
the propagation velocity is essentially identical to a solitary pulse. In the case of short distances,
however, the relaxation dynamics of the system has a profound impact on the dynamics of
trailing pulses [15, 16]. The resulting wavelength–velocity dependence is referred to as the
system’s dispersion relation. Numerical studies typically determine these dispersion relations
by simulating a single excitation pulse within a circular, one-dimensional medium [16, 17]. This
configuration mimics the dynamics of an infinite wave train but obviously does not allow for
variations of the, possibly unstable, interpulse distances.

Most experimental systems obey a simple dispersion relation in which the pulse velocity,
c, increases monotonically with increasing wavelength, λ, to saturate at the speed of the solitary
pulse [15, 18]. For this normal dispersion relation, the derivative dc/dλ is positive for all
wavelengths. Additionally, excitable systems have a minimal wavelength below which no wave
trains exist. These most common features of dispersion relations have been observed in numerous
experimental systems including electrodissolution processes [19] and aggregating slime mould
colonies [20]. Moreover, Flesselles et al [21] analysed dispersion data from chemical waves
in the BZ reaction and found that the propagation velocities can be described as the hyperbolic
tangent of the normalized periods. This finding is characteristic of media with simple exponential
relaxation.

Despite the abundance of normal dispersion in various chemical and biological systems,
even simple reaction–diffusion models can give rise to non-monotonic dispersion curves [22]–
[26]. This behaviour can be understood by a simple linear stability consideration. In a typical
excitable medium, the steady state is a stable node that becomes unstable as the system bifurcates
to oscillatory dynamics. Near the Hopf bifurcation point, the real parts of the eigenvalues vanish
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and the stable node becomes a stable spiral. Consequently, excitation pulses can be followed
by non-monotonic relaxation processes, which then give rise to an overshoot or ripples in the
dispersion relation [27, 28]. Notice that a rigorous description of this anomalous dispersion
requires analysis of the full reaction–diffusion system and its wave solutions in co-moving
coordinates.

Anomalous dispersion relations are known to exist in neuronal systems [29] and possibly
in the cellular slime mould Dictyostelium discoideum [30]. Moreover, recent studies on the
reduction of NO with CO on Pt(100) surfaces [31] and a modified BZ reaction [32]–[34]
have revealed anomalous dispersion in non-biological reaction media. In this paper, we give
a summary of some pertinent findings obtained from experiments with the latter reaction and
analyse the evolution of two-dimensional wave patterns.

2. Materials and methods

All of the reagents employed in this study are of the highest grade commercially available and
used without further purification. Stock solutions of sodium bromate (NaBrO3, Fluka) and
1,4-cyclohexanedione (C6H8(=O)2, Aldrich) are prepared in nanopure water obtained from a
microfiltration system (Barnstead EASYpure UV, 18 M� cm). Ferroin solution ([Fe(phen)3]2+,
Fluka, puriss. p.a.; 25 mM) and sulfuric acid (H2SO4, Fisher) are used without further preparation.
The stock solutions are mixed in the following order: water, sulfuric acid, 1,4-CHD, sodium
bromate and lastly ferroin. The temperature of the stock solutions and the reaction system is
kept constant at 25 ◦C.

All of the experiments described in section 3.1 were carried out in glass capillary tubes.
The inner diameter and the length of the capillaries are 1.1 and 75 mm, respectively. In contrast
to the classical BZ reaction that employs malonic acid (H2C(COOH)2) as its organic substrate,
the CHD–BZ reaction does not generate gaseous products and the spatial homogeneity of our
experimental system is therefore not compromised by bubbles [35]—[37].

All experiments described in section 3.2 involve thin layers of the aqueous reaction
medium that are created by confining the solution between two flat glass plates. The typical
height of the layer is 0.5 mm. These pseudo-two-dimensional reaction conditions suppress
the undesired loss of bromine from the liquid into the gas phase and minimize hydrodynamic
perturbations.

The samples are illuminated with diffusive white light to avoid reflection from the glass
surfaces of the batch reactors. The optical contrast arises from the profoundly different
absorption spectra of the redox couple ferroin (red, reduced)/ferriin (blue, oxidized) [12, 14]. All
experiments are monitored using an imaging system that consists of a PC-based frame grabber
board (data translation; 640×480 pixels resolution with 8 bit/pixel) and a monochrome charged-
coupled device camera (COHU 2122). The frame grabber board is controlled by commercial
software (HLImage++97).

The data collection is started towards the end of the induction period. At this time,
the reaction system switches from the spatially homogeneous oxidized state into the reduced
(excitable) state. Notice that the induction time in the CHD–BZ system is rather long and varies
with the initial concentrations around 30 min.
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Figure 1. Three representative time–space plots of the wave dynamics in the 1,4-
CHD–BZ reaction under pseudo-one-dimensional conditions. The horizontal
space axis and the vertical time axis span 21.6 mm and 150 s in (A), 14.5 mm and
300 s in (B), and 24.7 mm and 220 s in (C), respectively. The initial concentrations
are: [H2SO4] = 2.0 M (A–C), [NaBrO3] = 0.06 M (A), 0.25 M (B), 0.14 M (C),
[1,4-CHD] = 0.09 M (A), 0.25 M (B), 0.15 M (C), and [ferroin] = 0.5 mM (A–C).

3. Results

3.1. Quasi-one-dimensional systems

Figure 1 illustrates the three most abundant types of behaviour observed in the CHD–BZ reaction
that we refer to as stacking (A), merging (B) and bunching (C). Within these images, time evolves
in an upward direction and the horizontal axis corresponds to the one spatial dimension of the
reaction system. The rest state of the reaction medium is chemically reduced (i.e. [Fe(phen)2+

3 ]
� [Fe(phen)3+

3 ]) and represented by dark areas. Each excitation pulse appears as a white band
indicating a propagating transition into the oxidized state and a trailing transition back into the
rest state. Accordingly, the velocity of a pulse is given by the inverse slope of the corresponding
white band.

The three cases depicted in figure 1 share the common feature that excitation pulses
propagate fast if the distance to their predecessor is small, whereas large distances induce low
pulse speeds. This observation indicates that the corresponding dispersion curves are either fully
or at least partially anomalous (i.e. dc/dλ < 0). Moreover, the first pulse traverses the system at
the slowest possible speed. Consequently, all other excitation fronts decrease the distance to this
first pulse in a more or less rapid fashion. This phenomenon induces front-to-back encounters that
in figure 1(A) give rise to a closely stacked and expanding wavepacket. Nonetheless, each original
pulse is preserved in these dense structures. As shown in figure 1(B), front-to-back encounters
can also lead to the annihilation of the trailing pulses. Based on the visual appearance of the
corresponding time–space plot, we refer to this process as wave merging. A detailed analysis of
the underlying dispersion curves has been reported in [33] and is schematically reproduced in
figure 2.
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Figure 2. Schematic drawing of the dispersion relations that give rise to wave
stacking (red), wave bunching (red/yellow) and wave merging (green).

Notice that both types of dispersion curves in figure 2 have a single maximum that separates
normal from anomalous behaviour. The difference between wave stacking and merging arises
from the shape of the normal segments of the curves. In the case of wave stacking, the curve
falls below the speed c0 for decreasing interpulse distances and hence creates a unique point
(λ0, c0) on the dispersion that obeys the stability criteria dc/dλ > 0 and c(λ0) = c0 [22, 23].
Under these conditions, excitation fronts can form pulse multiplets that are stable against small
perturbations of their interpulse distances and in which all pulses travel with the velocity c0 of
the leading front. In the case of merging waves (green curve in figure 2), this attractor is not
present. Here, the fast trailing pulses are moving along the dispersion curve in the direction of
smaller distances until they lose stability and annihilate in a front-to-back collision with the slow
leading pulse.

The scenario illustrated in figure 1(C) shows the result of an experiment in which excitation
fronts cluster into pulse multiplets via a complex cascade of stacking events. The experimental
parameters, and hence the underlying dispersion curve, are very similar to those in figure 1(A).
However, the interpulse distance of the incoming wavefronts is large compared with the stacking
pulses in figure 1(A). The bunching behaviour shown in figure 1(C) can be understood as a wave
train instability in which the initially homogeneously spaced pulses rearrange to a short, stable
distance and very large distances that are less unstable. This intriguing instability had not been
observed earlier in any experimental system but was predicted by theoretical studies [22]–[25].
Notice that the cascade of bunching events continues until a single wavepacket is formed. An
experimental analysis of this very slow process, however, is difficult because it would require
unreasonably long reaction systems.

To obtain better insight into the parameter that control anomalous dispersion, we have
surveyed the CHD–BZ system for a broad range of initial concentrations. Figure 3 shows a
concentration space diagram in which the initial CHD and bromate concentrations are varied up
to values of 0.4 and 0.25 mol l−1 respectively. Solid red circles and blue diamonds represent
systems for which no wave propagation is found. In these cases, the reaction medium remains in a
reduced (i.e. red) or oxidized (i.e. blue) state respectively. These spatially homogeneous systems
surround an island of initial concentration in which propagating oxidation waves are observed.
These waves typically nucleate at the ends of the thin glass capillaries employed as reaction
vessels. Within a band of parameters at relatively low bromate concentrations, the excitation
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Figure 3. Phase diagram of the CHD–BZ reaction for sulfuric acid and
ferroin concentrations of 2.0 M and 5.0 mM respectively. Red circles and blue
diamonds indicate the fully reduced and oxidized media respectively. Under
these conditions, no waves could be initiated. Green squares denote initial
concentrations for which wave merging is observed. Black circles indicate wave
stacking, whereas black triangles represent experimental conditions for which
normal dispersion might exist.

waves merge similarly to those shown in figure 1(B). The corresponding initial conditions are
denoted as solid green squares. At higher concentrations of sodium bromate, wave merging is
replaced by wave stacking (solid black circles in figure 3). At the upper rim of the parameter
island, we found no evidence for anomalous dispersion (solid black triangles). However, it
should be noted that the corresponding reaction systems might reveal anomalous dispersion at
very long interpulse distances that were not accessible in our experiments. In other words, their
dispersion curves could resemble the one shown as a red line in figure 2 but with the maximum
shifted to extremely long wavelengths.

As demonstrated by the data in figure 3, stacking and bunching of waves are widespread
phenomena in the CHD–BZ reaction, whereas both phenomena are unknown in the classic
BZ reaction which employs malonic acid as the organic substrate. This finding suggests that
the underlying mechanisms differ from the dynamics that give rise to anomalous dispersion in
two variable models such as the FitzHugh–Nagumo equations or the Tyson–Fife model [38]
of the classic BZ reaction. Another unexpected finding relates to the role of the redox couple
ferroin/ferriin. In the classic BZ reaction, this organometallic complex serves as a catalyst and
as a convenient indicator that allows for the straightforward optical detection of the excitation
waves by two-dimensional spectrophotometry. Although crucial for the formation of chemical
waves, it is typically assumed that its total concentration has no or little influence on the dynamics
observed. Figure 4, however, shows a pronounced dependence of the front velocity on the ferroin
concentration employed.

The typical shape of the curves in figure 4 is sigmoidal and involves changes in the
front velocity of a factor five or more. This dependence is possibly related to the behaviour
of oscillations in well-stirred CHD–BZ systems where the complex role of ferroin has been
discussed by Kurin-Csörgei et al [39]. It was found that the reaction behaves like a typical
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Figure 4. Pulse speeds as a function of initial ferroin concentration. The
individual curves are measured at different initial concentrations of 1,4-
cyclohexanedione and sodium bromate. The corresponding values are denoted
in mol/l (see legend). The concentration of sulfuric acid is kept constant at
2.0 mol l−1.

BZ oscillator, if the concentration of ferroin exceeds 5 × 10−5 M. At concentrations of ferroin
below 5 × 10−5 M, however, it resembles an uncatalysed bromate oscillator (UBO). Our results
(figure 4) agree well with this finding, because they reveal a marked change in the velocity of
the first oxidation wave for concentrations of ferroin greater than 1 × 10−4 M.

3.2. Quasi-two-dimensional systems

The most prominent wave structures observed in two-dimensional excitable systems are rotating
spiral waves and target patterns. The latter involve expanding circular fronts that nucleate
from one particular pacemaker in the centre of the pattern. The pacemaker is typically a small
inhomogeneity such as a dust particle or other contamination at the surface of the reaction
vessel [40, 41]. To initiate waves in a periodic fashion this pacemaker must shift the reaction
system from an excitable into an oscillatory state.

A representative example of a target pattern in the CHD–BZ reaction is shown in figure 5.
The figure consists of three snapshots taken at intervals of 100 s. The first snapshot (A) reveals
two circular wavefronts and a small oxidized spot in the centre of the pattern that eventually
initiates the third front. In the subsequent frame (B), six circular fronts can be distinguished.
The outermost three are closely stacked whereas the inner fronts have a relatively large interpulse
distance. This behaviour is the simplest two-dimensional manifestation of the wave stacking
shown in the one-dimensional case of figure 1(A). It continues in the course of the time and
induces an expanding annulus of closely stacked pulses (figure 5(C)).

The stacking behaviour within the target pattern creates pronounced differences in the local
excitation period. Figure 6 shows intensity traces that were extracted from a point close to the
nucleation centre and from a location in the periphery of the pattern shown in figure 6. Its
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Figure 5. Three consecutive snapshots of a typical target pattern in the CHD–BZ
reaction. The circular pulses are stacking along the outer rim of the wave pattern.
Click here to see a short movie illustrating the spatio-temporal dynamics of this
pattern. Time between snapshots: 100 s. Image size: 25.3 × 22.6 mm2. Initial
concentrations: [NaBrO3] = 0.06 M, [1,4-CHD] = 0.09 M, [H2SO4] = 2.0 M,
[ferroin] = 5.0 mM.
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Figure 6. Optical intensities recorded at two different positions close to the centre
(red) and in the periphery (blue) of the pattern shown in figure 5. The location of
the detection points is indicated in the small inset. Their distance is 6.8 mm.

particular pacemaker generates excitation pulses with a constant period of 32 s. This period
is well preserved in the red trace that is extracted from the position in close proximity to the
pacemaker. At the distant point, however, the excitation period has decreased to 13 s as illustrated
by the blue curve in figure 6. Notice that the latter curve is initially flat since a relatively long
time (∼3 min) passes until the arrival of the first wavefront.

A surprising consequence of our observation is the existence of two dominant excitation
periods within the target pattern. A given point within the pattern is either subject to the high-
frequency pulses of the stacked outer rim or under the influence of the driving period of the
pacemaker. The transition between this low-frequency near-field and the high frequency within
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Figure 7. Four consecutive snapshots of a typical target pattern in the CHD–
BZ reaction. The circular pulses are merging along the outer rim of the wave
pattern. Click here to see a short movie illustrating the spatio-temporal dynamics
of this pattern during its early stages. Time between snapshots: 10 s. Image
size: 13.8 × 13.0 mm2. Initial concentrations: [NaBrO3] = 0.09 M, [1,4-CHD]
= 0.19 M, [H2SO4] = 2.0 M, [ferroin] = 5.0 mM.

the stacked outer rim occurs over a relatively short distance. Accordingly, the transition region
has the shape of a very thin annulus and propagates with it is own characteristic velocity. A
simple analysis [34] reveals that this velocity cs is given by the two dominant speeds and periods
(or interpulse distances) of the fronts within the target pattern according to the equation

cs = (c0λ1 − c1λ0)/(λ1 − λ0) = c0c1(T1 − T0)/(c1T1 − c0T0),

where ci , λi and Ti (i = 0, 1) denote the speed, interpulse distance and period of the leading
pulse (i = 0) and the fast, inner fronts (i = 1) respectively.

Figure 6 reveals an additional feature of excitation waves in the CHD–BZ reaction. The
intensity changes reflect the oxidation state of the catalyst which is the only chemical species that
absorbs visible light in this reaction system. High intensity values indicate that a large fraction of
the catalyst is oxidized whereas low values correspond to the chemically reduced state. The data
presented in figure 6 reveal that neither the high frequency nor the low frequency pulses recover
the oxidation characteristics of the reduced rest state. Furthermore, the intensity decay in the
wake of the pulses shows no overshot or damped oscillations. Hence, we are able to conclude
that the oxidized catalyst (ferriin) is not the control variable that induces anomalous dispersion
although it might participate in the overall dynamics.

We also probed various pseudo-two-dimensional CHD–BZ systems for the existence of
target patterns that undergo wave merging. Our experiments revealed that these exotic structures
indeed exist and that the chemical conditions for their formation can be predicted from the phase
diagram shown in figure 3. Figure 7 shows a typical example of such a merging target pattern.
The four snapshots illustrate the dynamics of the target pattern during a relatively late stage.
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These data are accompanied by a movie that has been compiled from frames obtained during
earlier stages of the evolution of the same pattern. The snapshots as well as the movie reveal that
the outermost front propagates at a relatively low velocity and that the subsequent, fast pulses
annihilate with it in front-to-back collisions. Accordingly, this behaviour is analogous to the
one-dimensional merging dynamics shown in figure 1(B).

Despite this analogy of one- and two-dimensional systems, figure 7 also reveals an
interesting feature that is either absent or less readily observed in the one-dimensional case. While
snapshots (A) and (D) show a target pattern of nearly perfect circular symmetry, pronounced
deviations are apparent during the close encounter of the second outermost front with the leading
pulse (B), (C). In the ten o’clock direction, the trailing pulse reaches its predecessor early
and induces a striking deformation from the initial circular front shape. We suggest that this
phenomenon is due to the amplification of small initial perturbations in the nonlinear velocity
field created by the leading pulse. These initial perturbations might be partially induced by
anomalous behaviour in the near vicinity of the pacemaker which seems to nucleate pulses in a
slightly asymmetric fashion.

4. Conclusions

In summary, this study presents experimental results that illustrate some of the most pertinent
differences between the CHD–BZ and the classic BZ reaction. Whereas wave propagation in
the latter system is governed by normal dispersion relations, the CHD–BZ reaction shows an
abundance of phenomena that are characteristic for anomalous dispersion. These include the
formation of closely stacked wavepackets that are observed in one- as well as two-dimensional
systems.

An intriguing feature of these wavepackets is that they are expected to be stable against
perturbations. In other words, externally induced variations of their characteristic interpulse
distance will decrease rapidly to re-establish the original configuration. Large distances between
individual wavepackets are only mildly unstable, meaning that their fusion would require
extremely long times. From a practical point of view, this opens up fascinating possibilities
for their use in signal transmission. For example, one can envision the encoding of information
in terms of the number of individual pulses constituting a particular wavepacket. Sequences of
these packets could then relay information over large distances in the form of information blocks
that are stable against perturbations.

While the authors do not expect any immediate technical developments to arise from
anomalous excitation waves, it is tempting to speculate about their relevance in biological
systems. Waves of action potential in neuronal systems can be subject to dispersion phenomena
that are similar to those discussed in this work [29, 42]. This behaviour is often referred to as
supernormal excitability [43] and it might affect the operation of neuronal networks in unexpected
ways.

Also many open questions remain in the context of the CHD–BZ reaction. Our data show
that anomalous dispersion is more abundant than expected from the simple two-species models
discussed in the introduction. This finding suggests that anomalous dispersion arises from a
specific feature of the underlying reaction mechanism. For example, the relaxation dynamics
in the wake of an excitation pulse could be controlled by two or more chemical species such
as an activator and an inhibitor that change concentration levels with different rates and hence
create an ‘optimal’ distance for a subsequent pulse. This suggestion is also supported by our

New Journal of Physics 5 (2003) 58.1–58.12 (http://www.njp.org/)

http://www.njp.org/


58.11

finding that the concentration of ferriin decreases monotonically in the wake of pulse without
any overshoots or ripples.

In conclusion, we believe that the CHD–BZ reaction is an ideal model for further
investigations of excitable systems with anomalous dispersion. While this study presented some
insights into the dynamics of simple two-dimensional target patterns, more work is needed
to explore the intricate balance between anomalous pulse propagation and curvature-induced
velocity changes [44]. In particular, it will be interesting to study the dynamics of wave collisions
in front-to-front encounters and the dynamics of spiral wave rotation.
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