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Quantized Spiral Tip Motion in Excitable Systems with Periodic Heterogeneities
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Meandering spiral tips in homogeneous reaction-diffusion systems are characterized by two
generically incommensurate radii and frequencies. Here, we create periodic perturbations in space
to induce a transition to commensurate radii and frequencies that exhibit a devil’s staircase. The
plateaus of the staircase correspond to pinned or complex periodic orbits of the spiral tip.
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Vortices are observed in a variety of spatially extended
systems. Examples include superconductors, Bose con-
densates, nonlinear optical media, and fluids with
Rayleigh-Bénard flow [1]. Among nonequilibrium sys-
tems, reaction-diffusion (RD) media have contributed
significantly to our understanding of these intriguing
structures [2]. A major focus of current research is the
external control of the wave patterns through periodic
forcing [3], intricate feedback mechanisms [4], and spa-
tial heterogeneities. The latter influence the dynamics of
excitation vortices strongly and can give rise to aniso-
tropic deformations of the global wave pattern [5]. Such
phenomena are of particular interest because similar
excitation waves exist in the intrinsically heterogeneous
matter of living systems, such as cell colonies and cardiac
and neuronal tissues [6].

In spatially homogeneous RD media, spiral tips de-
scribe circular or meandering trajectories [2,7]. The latter
involve generically incommensurate frequencies and
radii. In heterogenous systems that have obstaclelike
areas, spirals are thought to be pinned to individual
obstacle units. Examples for this behavior include
Wiener and Rosenblueth’s classic work on impulse con-
duction in cardiac muscle [8] and studies on spiral waves
in chemical media [5,9]. In this Letter, we demonstrate
that periodic heterogeneities can induce motion around
numerous obstacle units. Moreover, the parameters of the
tip trajectories are locked to values that are commensu-
rate with the system’s lattice constant yielding periodic
orbits of finite length. These quantized orbits follow a
devil’s staircase [10] as the refractory period of the sys-
tem is varied.

Our experiments employ the 1,4-cyclohexanedione
Belousov-Zhabotinsky (CHD-BZ) reaction. This RD sys-
tem involves the oxidation of an organic substrate by
bromate in acidic solution and shows autocatalytic oxi-
dation waves that are easily monitored under white light
with a charged-coupled-device camera [11]. Following
the preparation described in Ref. [12], we use soft lithog-
raphy to create micropatterned reactor chips that are
filled with the liquid CHD-BZ solution. The reactors are
produced from the transparent elastomer poly(dimethyl-
siloxane) (PDMS) and sealed with a glass slide. The
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PDMS side of the reactor has a patterned surface re-
lief that we designed as a gridlike array of intersect-
ing channels. The width and height of the channels are
both 200 �m. All obstacles are square and have an
edge length of 800 �m. The CHD-BZ solution is pre-
pared in nanopure water and employs the redox-catalyst
Fe�batho�SO3�2�

4�=3�
3 at a concentration of 0:5 mmol=L.

The initial concentrations of sulfuric acid, sodium bro-
mate, and [1,4-cyclohexanedione] are varied, but always
yield long induction times (4–6 h) during which the
reaction remains in an unexcitable, oxidized state.
Within the parameter range studied, spatially homoge-
nous CHD-BZ systems show meandering spirals with
large hypocyclic trajectories that cover areas of up to
40 mm2 [13]. All experiments are carried out at room
temperature.

Figure 1 shows an example of a spiral wave (white
regions) propagating in a PDMS reactor. The overall
pattern is fragmented and also deformed in vertical and
horizontal directions according to the gridlike structure
of the reactor. The spiral tip is not pinned to an individual
PDMS obstacle, but rather rotates around two obstacle
units that are marked with thin, black crosses. Notice that
the tip has entered the channel between these two ob-
stacles in the second frame. However, this particular
wave segment fails to create a sustained rotation around
the lower obstacle as it vanishes before exiting.

The trajectories of spiral tips depend strongly on the
size of the obstacles, their overall geometry, and the
initial concentrations of the reaction solution. Examples
include rotation around 1, 1� 2, and 2� 2 obstacles.
Figure 2(a) shows the resulting length d of the closed
tip trajectories as a function of sulfuric acid concentration
for three different concentrations of CHD. The discrete
and periodic nature of the reactor geometry causes the
locking of tip trajectories in certain permissible orbits.
The longest trajectories are found for low concentrations
of H2SO4 and CHD, whereas high concentrations give rise
to simple pinning at single obstacles.

For lower initial concentrations, additional trajectories
are observed, such as rotation around 1� 3 obstacles. A
typical example for this behavior is shown in Fig. 2(b),
with the first five frames illustrating the main tip rotation
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FIG. 2. (a) Length of spiral tip trajectories d as a function of
sulfuric acid concentration for �NaBrO3� � 0:25 mol=L. The
corresponding trajectories result from rotation around 1, 1� 2,
and 2� 2 obstacles, which we denote as ‘‘1,’’ ‘‘12,’’ and ‘‘2,’’
respectively. (b) Five consecutive snapshots of a spiral wave
rotating around 1� 3 obstacle units (marked by black crosses).
Time between frames: 75 s. Field of view: �6:12� 6:12� mm2.
The sixth frame shows the resulting tip trajectory. Field of
view: �5:0� 5:0� mm2. Initial concentrations in mol=L:
�CHD� � 0:05, �NaBrO3� � 0:25, and �H2SO4� � 0:09.

FIG. 1. Consecutive images of a counterclockwise rotating
spiral wave in a micropatterned reactor. Individual frames
are obtained by image subtraction yielding the bright (dark)
areas where the oxidation (reduction) of the catalyst is fast.
Over the entire sequence, the spiral tip performs one complete
rotation around the two obstacles that are marked by thin
crosses. Initial concentrations in mol=L: �H2SO4� � 0:09,
�NaBrO3� � 0:50, and �CHD� � 0:20. Time between frames:
25 s. Image area: �6:65� 6:65� mm2.
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around the perimeter of the linear obstacle chain. This
motion determines the frequency of the wave pattern
(here 300 s). The spiral wave also enters the channels
within the obstacle cluster similarly to the example
shown in Fig. 1, which creates the discontinuous tip
trajectory shown in the sixth frame of Fig. 2(b).
Starting from the upper right corner of the trajectory,
the tip moves one obstacle length to the left, two down,
and then turns right to vanish at the next intersection. The
next closest wave segment becomes the new tip.
Originating at the lower left corner, it mirrors the path
of the prior tip and completes the pattern.

To obtain more insight into the behavior of spiral waves
in excitable systems with periodic heterogeneities, we
carry out numerical simulations that mimic the essential
features of our experiments. Our simulations employ
Barkley’s model [14] of excitable RD media, which in-
volves a fast activator u�x; y; t� and a slow inhibitor vari-
able v�x; y; t�. We modify this model by introducing a
control function ��x; y� that distinguishes excitable re-
gions (� � 1) from obstacles (� � 0). To qualitatively
model the loss of Br2 and BrO2� [12] into the PDMS
matrix, the variables undergo simple exponential decay
within the obstacle regions:
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The parameters �, b, and � are kept constant at 0.6, 0.005,
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0.005, respectively, whereas a is varied between 0.16 and
0.6 to explore systems with different spiral tip dynamics.
Our simulations are carried out for gridlike arrays in
which the side length of the obstacles (s0 � 1:2) equals
the width of the individual channels (w0).

Figure 3 shows nine consecutive snapshots of a spiral
wave rotating around a pair of next-neighbor obstacle
units. These obstacles are highlighted as white squares.
The simulations show excellent agreement with the ex-
perimental data in Fig. 1. A minor difference between
experiment and simulation concerns the wave segments
that periodically enter the channel between the central
obstacles. In the simulation, this process occurs twice per
period and the wave segments vanish at the midpoint of
the channel. We note that this symmetric motion is also
observed in our experiments but for higher initial con-
centrations of CHD and NaBrO3.

The simulations reveal a great variety of tip trajecto-
ries, some of which are illustrated in Fig. 4(a). To classify
the trajectories, we introduce the following notation. We
disregard wave segments that only probe channels but do
not successfully exit. The resulting clockwise tip motion
then describes a continuous path consisting of a repetitive
sequence of horizontal and vertical lines. These straight
lines involve motion along one, two, or more obstacle
units. Consequently, we can describe simple pinning as
‘‘1,’’ rotation around two obstacles as ‘‘12,’’ and so on.
The latter examples yield closed trajectories after four
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FIG. 4. (a) Schematic illustration of some spiral tip orbits.
(b) Numerical results for the average step length f=s0 of tip
orbits as a function of the model parameter a. The inset shows
the a value for ‘‘1’’ to ‘‘112’’ transitions as a function of the
obstacle length s0 for s0 � w0 with the dashed line indicating
the Hopf bifurcation point of the homogeneous medium.
(c) Maximal and average radii of spiral tip orbits in the
homogeneous system for various values of a. The data are
plotted as multiples of the radius rc � 0:8 at the Hopf bifurca-
tion point ac � 0:37. The inset shows three representative tip
trajectories.

FIG. 3. Numerical simulation of a spiral wave based on
Eqs. (1) and (2) using Euler integration and no-flux boundaries.
The spiral tip rotates around a pair of obstacle units that are
plotted in white. System length � 38:4; side length of obstacles
s0 � 1:2; model parameter a � 0:25; number of grid points �
512� 512; time step �t � 10�3.
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(i.e.,‘‘1111’’) and two repetitions (‘‘1212’’) with lines that
neither cross nor overlap. However, other trajectories such
as ‘‘222131’’ do intersect and visit certain channels more
than once before closing their path.

For each tip orbit represented by the sequence
n1; n2; . . . ; nm, one can compute the average length f of
the straight lines constituting the pattern according to
f � �w0 
 �s0 
 w0�

Pm
i�1 ni=m, where w0 denotes the

channel width. Notice that for a given wave velocity, the
quantity f determines the excitation period far from the
tip area. Figure 4(b) shows f=s0 as a function of the
model parameter a. The data reveal a devil’s staircase
with simple pinning for large values of a. For small a, we
find long orbits that involve up to 25 obstacles as in the
case of ‘‘225.’’ The most pronounced plateaus correspond
to the simple sequences ‘‘1,’’ ‘‘112,’’ ‘‘12,’’ and ‘‘2.’’
Three out of these four sequences are observed in our
experiments. A preliminary survey of the tip dynamics in
the �a; b�-parameter plane revealed numerous sequence
bands. With increasing values of b, the more intricate
sequences such as ‘‘222131’’ and the sequences with f >
2s0 seem to vanish or become extremely thin.

Important conclusions can be drawn by comparing the
devil’s staircase in Fig. 4(b) with the dynamics of spiral
waves in spatially homogeneous media. Figure 4(c) shows
that the maximal and average radii of tip trajectories
decrease with increasing values of a. For a > 0:37, we
find periodic rotation around circular orbits. For smaller
values, a supercritical Hopf bifurcation induces quasi-
periodic tip dynamics along hypocycles [see inset of
Fig. 4(c)], each of which is characterized by two frequen-
cies (f1; f2) and radii (r1; r2) that are generically incom-
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mensurable [14]. We suggest that the devil’s staircase in
Fig. 4(b) is a quantized version of the smooth data shown
in Fig. 4(c). This quantization is induced by the periodic
heterogeneities and results in mode-locked, periodic tip
trajectories. Similar to examples of devil’s staircases in
other systems [10], the length of the plateaus are generally
wider for values of f=s0 that are ratios of small integers.

Moreover, we find that the transition point aT , at which
simple pinning ‘‘1’’ changes to ‘‘112’’ motion, roughly
coincides with the onset of meandering in the homo-
geneous system. However, the inset of Fig. 4(b) shows
that aT decreases monotonically with increasing values
of s0 and that aT can differ significantly from the bifur-
cation point of the homogeneous medium (see dashed
line). Consequently, circular tip motion in homogeneous
158301-3



VOLUME 93, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S week ending
8 OCTOBER 2004
systems can give rise to compound motion around several
obstacle units and meandering spirals can be pinned to
single obstacles.

Despite this s0-dependent shift of aT , quasiperiodic
meandering and quantized tip orbits in periodic reactor
arrays share profound similarities. In both cases, the tip
generates a refractory profile in its wake that controls its
reentry and, in particular, forbids renewed excitation
within the absolute refractory zone. For heterogeneous
systems one can simplify this self-interaction and quali-
tatively discuss the breakdown of simple pinning: If the
absolute refractory zone is shorter than the circumference
of the obstacle, the tip is pinned to this particular ob-
stacle. However, the tip is forced to select a different orbit
of longer average length, if the size of the obstacles is
decreased or if the length of the absolute refractory tail is
increased (e.g., by decreasing the values of a or �H2SO4�).
Hence, we expect that the average circumference of the
quasiperiodic orbit for a � aT is similar to the perimeter
of the individual obstacles and, for s0 � 1:2, we indeed
find these values as 2�r0 � 5:7 and 4s0 � 4:8.

In the framework of this simple discussion, we can
approximate the spiral tip as an autonomous, chiral
walker on a square lattice. The walker turns clockwise
at every intersection if the channel (i.e., the bond) ahead
has not been visited during the last n time steps. Other-
wise it moves straight, thus avoiding the turn. This au-
tomaton generates trajectories such as ‘‘1’’ (n � 3), ‘‘112’’
(4 � n � 6), and ‘‘11213’’ (7 � n � 8). Moreover, we
obtain the sequences ‘‘1,’’ ‘‘12,’’ ‘‘13,’’ etc., if the critical
refractoriness n is assigned to the nodes rather than to the
bonds of the lattice. The resulting wealth of trajectories
increases even further for chiral walkers on lattices with
independent refractoriness of nodes and bonds. These
simple models yield some agreement with our experimen-
tal and numerical findings but more importantly provide a
qualitative understanding of the onset of multiobstacle
motion and the devil’s staircases in Figs. 2(a) and 4(b).
However, the dynamics of spiral waves in RD systems are
clearly more complex, because (i) the refractory tail is
determined by the entire ‘‘arm’’ of the spiral wave and
(ii) the tip motion is subject to curvature effects [15].

In conclusion, we have presented examples for quan-
tized spiral rotation in RD systems with periodic hetero-
geneities. The experimental findings are reproduced by
numerical simulations on the basis of a generic model for
excitable media, thus indicating that the observed dy-
namics are characteristic for this class of systems. In
particular, we believe that related phenomena exist in
biological media, such as the interior of single cells and
158301-4
cell cultures [16], where nonexcitable structures, such as
organelles or spatial variations in cell density, cause
severe heterogeneities.
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