Faculty

FLORIDA STATE   /   PEOPLE   /   FACULTY

Dr. M. Elizabeth Stroupe, Associate Professor
Ph.D., Scripps Research Institute, 2002

Contact Information

Email mestroupe@bio.fsu.edu
Office 202 KLB 850.645.1751
Lab 218 KLB 850.645.9317

Current students

Research Interest

What is the relationship between a molecule’s structure and its activity in the cell? I am interested in understanding the structure/function relationships driving two pathways: the transformation of a gene into a protein and sulfur metabolism. The two projects in my laboratory are not related topically, but are united in approach. Questions that interest me about the progression of information from a gene to a protein include: how is gene expression controlled by alternative DNA structures? How are ribosomes assembled into functional units? Questions that interest me about the biochemical basis for sulfur metabolism include: how do electrons move from the reductase subunit to the active site of the central sulfur metabolic enzyme sulfite reductase? How is sulfite reductase’ essential metallic cofactor synthesized? I use x-ray crystallography and single-particle cryogenic electron microscopy (cryo-EM) to probe across resolutions so I can link atomic resolution details, macromolecular assemblies, and cellular activity.

The lab uses a combination of x-ray crystallography and cryo-EM to determine the structure and function of these important biomolecules.

Publications

Publications
Stroupe, M. E., & Warren, M. J. (2017). Siroheme assembly and insertion to Nitrite and Sulfite Reductase. In Johnson, M. K, & Scott, RA. . (Eds.), Encyclopedia of Inorganic and Bioinorganic Chemistry: Metalloprotein Site Assembly. Chichester. Retrieved from http://dx.doi.org/10.1002/9781119951438.eibc2487
Johnson, M. C., Sena-Velez, M., Washburn, B. K., Platt, G. N., Lu, S., Brewer, T. E., Lynn, J. S., Stroupe, M. E., & Jones, K. M. (2017). Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome. J. Struct. Biol, 200, 343-359. Retrieved from http://www.sciencedirect.com/science/article/pii/S1047847717301363?via%3Dihub
doi:10.1016/j.jsb.2017.08.005
Johnson, M. C. *., Ghalei, H., Doxtader, K. A., Karbstein, K., & Stroupe, M. E. (2017). Structural Heterogeneity in Pre-40S Ribosomes. Structure, 25, 329-340. Retrieved from http://www.cell.com/structure/references/S0969-2126(16)30401-4 doi:http://dx.doi.org/10.1016/j.str.2016.12
Khoshnevis, S., Askenasy, I., Johnson, M. C., Dattolo, M. D., Young-Erdos, C. L., Stroupe, M. E., & Karbstein, K. (2016.) The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation. PLoS Biology. Retrieved from: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002480 doi:10.1371/journal.pbio.1002480
Johnson, M. C., Tatum, K. B., Lynn, J. S., Brewer, T. E., Washburn, B. K., Stroupe, M. E., & Jones, K. M. (2015). Sinorhizobium meliloti phage ΦM9 defines a new group of T4-superfamily phages with unusual genomic features, but a common T=16 capsid. Journal of Virology, 10945-10958. Retrieved from http://jvi.asm.org/content/89/21/10945.long doi:10.1128/JVI.01353-15

Askenasy, I., Pennington, J. M., Tao, Y., Marshall, A. G., Young, N. L., Sheng, W., & Stroupe, M. E. (2015). The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain that Mediates Holoenzyme Assembly. Journal of Biological Chemistry, 290, 15. Retrieved from http://www.jbc.org/content/early/2015/06/18/jbc.M115.662379.full.pdf+html doi:10.1074/jbc.M115.662379.
Ghalei, H., Schaub, F., Doherty, J., Roush, W. R., Cleveland, J. J., Stroupe, M. E., & Karbstein, K. (2015). Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. The Journal of Cell Biology, 208, 745-759. Retrieved from http://jcb.rupress.org/content/208/6/745.full.pdf+html doi:10.1083/jcb.201409056
Kopylov, M., Bass, H. W., & Stroupe, M. E. (2015). Identification and characterization of a plant G-quadruplex-binding protein encoded by the maize (Zea mays L.) nucleoside diphosphate kinase1 gene, ZmNDPK1. Biochemistry, 54, 1743-1757. Retrieved from http://pubs.acs.org/doi/abs/10.1021/bi501284g doi:10.1021/bi501284g
Andorf, C. M., Kopylov, M., Dobbs, D., Koch, K. E., Stroupe, M. E., Lawrence, C. J., & Bass, H. W. (2014). G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation. J Genet Genomics, 12, 627-647. Retrieved from http://www.sciencedirect.com/science/article/pii/S1673852714001866 doi:10.1016/j.jgg.2014.10.004
Brewer, T., Stroupe, M. E., & Jones, K. M. (2014). The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology, 450-451, 84-97. Retrieved from http://www.sciencedirect.com/science/article/pii/S0042682213006491 doi:10.1016/j.virol.2013.1
Stroupe, M. E., Brewer, T., Sousa, D. R., & Jones, K. M. (2014). The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages. Virology, 450-451, 205-212. Retrieved from http://www.sciencedirect.com/science/article/pii/S0042682213006399 doi:10.1016/j.virol.2013.1
Stroupe, M. E., Brewer, T., Sousa, D. R., & Jones, K. M. (2014). The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages. Virology, 450-451, 205-212. Retrieved from http://www.sciencedirect.com/science/article/pii/S0042682213006399 doi:10.1016/j.virol.2013.1
Gilmore, K.; Gold, B.; Clark, R.; Alabugin, I. V. Convenient, Ambient Temperature Generation of Sulfonyl Radicals for Addition to Alkynes. Aust. J. Chem., 2013, 66, 336–340. Invited article for a special issue. http://www.publish.csiro.au/?act=view_file&file_id=CH12499.pdf.
Smith, K. W., & Stroupe, M. E. (2012). Mutational analysis of sulfite reductase hemoprotein reveals the mechanism for coordinated electron and proton transfer. Biochemistry, 51(49), 9857-68. Retrieved from http://pubs.acs.org/doi/abs/10.1021/bi300947a doi:10.1021/bi300947a